Water Management in Refining Processes

Amy Frink
Timilehin Kehinde
Brian Sellers
Department of Chemical, Biological, and Materials
Engineering
5/8/2009

Table of Contents

Backgrou	ınd	3
Simulatio	on Methods	22
PRO/II	I	22
Steady	<i>T</i>	23
Mathea	ad	23
Excel		25
Results		26
Outlet	Concentration models	27
I.	API separator	27
II.	Chevron Wastewater Treatment	29
III.	Biological Treatment (Activated Sludge)	33
IV.	Desalter	35
V.	Crude oil distillation column	40
Compa	arison of concentration models with simulation results	42
Equipr	ment Cost models	45
I.	API separator	45
II.	Chevron Wastewater Treatment	45
III.	Biological Treatment (Activated Sludge)	45
IV.	Reverse Osmosis	46
V.	Activated Carbon Adsorption	46
Mathema	tical Programming Results	47
Conclusio	ons	50
Recomme	endations	51
Reference	es	52
Appendix	ς Ι	53
Appendix	x II	72
Appendix	x III	80
Endnotes		92

Background

Water serves many purposes in an oil refinery, including but not limited to cooling high-temperature refining operations, equipment washing, steam generation, unit hydrotests, and fire fightingⁱ. In the process of generating a system modeling water use in a refinery, six units will be explored that use water to absorb contaminants from the crude oil that is processed in the plant. These six processes are caustic treating, distillation, amine sweetening, Merox I sweetening, hydrotreating, and the desalter unit. The contaminants that are removed during the processes are salts, organics, H₂S, and ammonia. Table 1 below lists the maximum inlet and outlet concentrations for the six water-using units.

Process	Contaminant	Cin,max	Cout,max	Mass Load
		(ppm)	(ppm)	(kg/h)
	Salts	300	500	0.18
(1) Caustic Treating	Organics	50	500	1.2
(r) Gauge Frenchig	H_2S	5000	11000	0.75
	Ammonia	1500	3000	0.1
	Salts	10	200	3.61
(2) D' (3) (Organics	1	4000	100
(2) Distillation	H_2S	O	500	0.25
	Ammonia	0	1000	0.8
	Salts	10	1000	0.6
	Organics	1	3500	30
(3) Amine Sweetening	H ₂ S	0	2000	1.5
	Ammonia	0	3500	1
	Salts	100	400	2
(0.35 + 50	Organics	200	6000	60
(4) Merox I Sweetening	H ₂ S	50	2000	0.8
	Ammonia	1000	3500	1
	Salts	85	350	3.8
	Organics	200	1800	45
(5) Hydrotreating	H ₂ S	300	6500	1.1
	Ammonia	200	1000	2
	Salts	1000	9500	120
(0 D 1	Organics	1000	6500	480
(6) Desalter	H ₂ S	150	450	1.5
	Ammonia	200	400	0

Table 1. Maximum inlet, outlet concentrations (ppm) for six water-using unitsⁱⁱ

Figure 1 below gives a schematic of a typical refinery. The water-using units are circled in red and the wastewater treatment processes are circled in green.

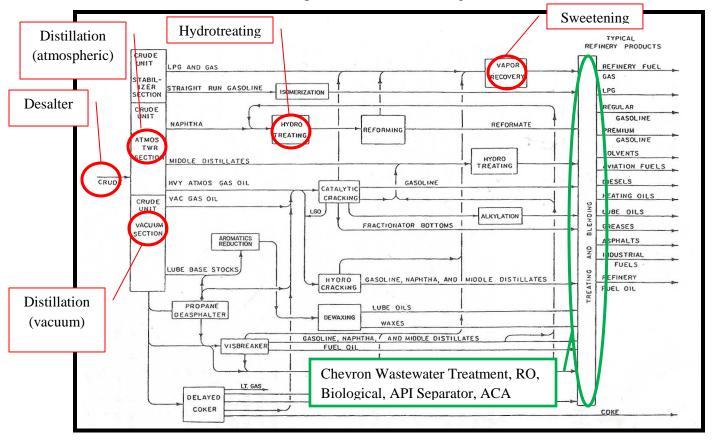
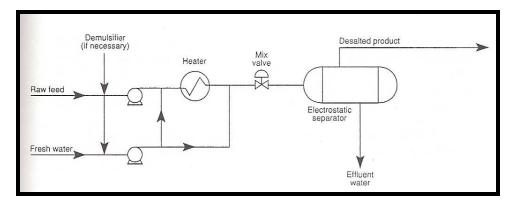



Figure 1. Refinery schematicⁱⁱⁱ

Crude desalting is usually the first step in a petroleum refining process. Crude oil enters into the refining unit from outside storage tanks and contains heavy amounts of contaminants, including water with dissolved or suspended salt crystals. It is heated by heat exchangers in order to increase the viscosity^{iv}. A separate water stream is then introduced to the system and comes into contact with the crude oil, after which the two streams are vigorously mixed over a mixing valve. Water and crude oil are immiscible solvents and since salt has a higher solubility in water, the aforementioned salt particles will partition into the water. A schematic of the desalting process is shown on the following page.

Figure 2. Single-stage electrostatic desalting system^v

There are two types of distillation: atmospheric and vacuum. After the desalting stage, the crude oil is heated in heat exchangers and heated to about 750 degrees Fahrenheit before it enters into an atmospheric distillation unit. Atmospheric distillation separates light end products like natural gas, naphtha, and gas oil from crude oil. The crude is partially vaporized in a fired heater before entering the distillation unit flash zone. Superheated steam is introduced through the column bottom to strip any remaining gas oil from the flash zone liquid. The steam reduces the hydrocarbon partial pressure thereby reducing vaporization temperature. An atmospheric column is shown below:

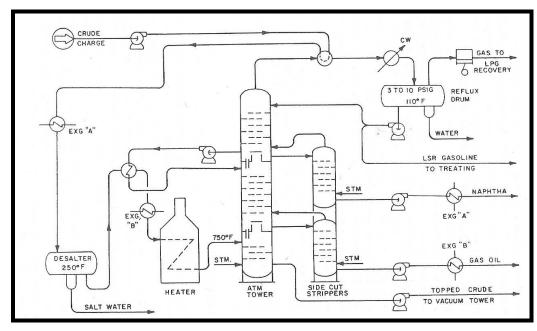


Figure 3. Atmospheric distillation unit^{vi}

Following atmospheric distillation, the heavy bottoms product containing heavier fractions of crude oil is sent to a vacuum distillation tower where distillation under very low pressures (usually 25 to 40 mmHg^{vii}) is carried out. Temperatures required for atmospheric distillation of heavier components would be too high and would result in cracking of hydrocarbons. By lowering the distillation pressure and introducing steam to the system (to improve vaporization), heavier products can be distilled. Prior to entering the distillation column, the topped crude is heated in a furnace to temperatures of about 750-850 degrees Fahrenheit. After distillation, different fractions of heavy components exiting the system pass through pumps and heat exchangers. A vacuum distillation column is shown below:

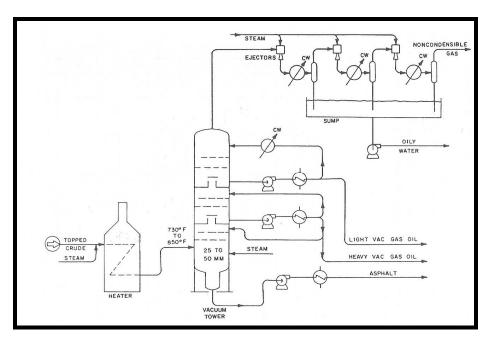
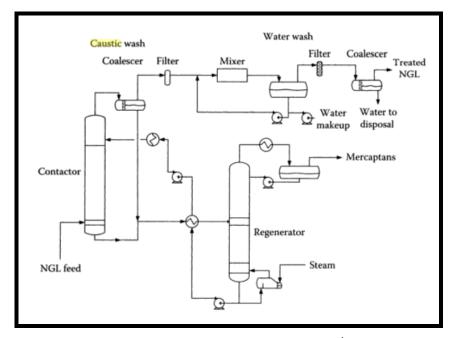
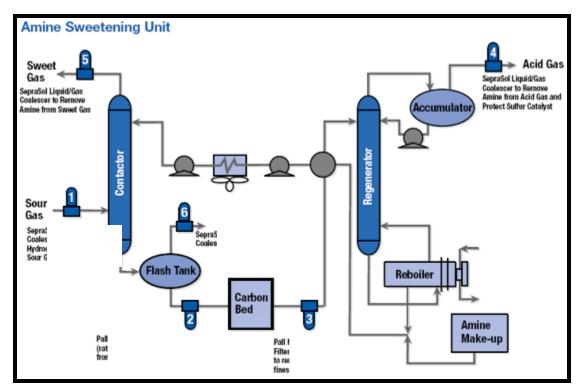



Figure 4. Vacuum distillation unit viii


Caustic treating is a refining process that uses an aqueous solution of NaOH to absorb acid gas compounds, like H₂S, CO₂, and mercaptans, found in natural gas or liquid hydrocarbon streams. Crude oil fractions that exit from the vapor stream in a distillation tower contain sulfurbased compounds, which are odiferous and corrosive. Following distillation, this light crude stream goes through amine treatment, which removes many of the mercaptans and helps to reduce the load that is sent to caustic treatment^{ix}. A caustic solution of normally 15 wt% NaOH and higher is then introduced into an absorption tower where it comes into contact with the

passing stream of light crudes and extracts the contaminants^x. Caustic treating is normally used to clean liquefied natural gas (LNG) and diesel fuels. A diagram of a caustic treatment unit is shown below.

Figure 5. Caustic treating process^{xi}

Amine sweetening is a process whereby aqueous solutions of alkanolamines (such as monoethanolamine or diethanolamine) absorb contaminants like hydrogen sulfide (H_2S), carbon dioxide (CO_2), and mercaptans from a passing stream of natural gas. The absorption process is called sweetening because it eliminates the bitter odor coming from the sour feed making the clean gas smell "sweet". The acid gas contents are removed through chemical reactions with the amines in the amine solution and come out of the absorber in the rich amine liquid solution. A flash tank is usually installed at the absorber outlet to reduce flash any hydrocarbons that may be in the feed, thereby removing them from the acid gas product^{xii}. A process flow diagram of an amine-sweetening unit is shown in Figure 6.

Figure 6. Amine-sweetening unit^{xiii}

Hydrotreating is a process that removes elemental sulfur, nitrogen, oxygen, halides, and trace metals from crude oil in order to improve the quality of its constituents, such as gasoline, diesel fuel, and jet fuels. Hydrotreating is used to convert olefins and unstable diolefins into paraffins by reacting them with hydrogen. A schematic of the hydrotreating process is shown in Figure 7. Hydrogen is mixed with feed liquids and heated in a heating furnace. The heated crudes, at about 700-800°F, are passed through a catalytic reactor where chemical reactions convert organic sulfur and nitrogen compounds to hydrogen sulfide and ammonia. The reactor effluent is cooled in a heating exchanger and condensed hydrocarbons are sent to a stripper, where a desulfurized bottoms product exits.

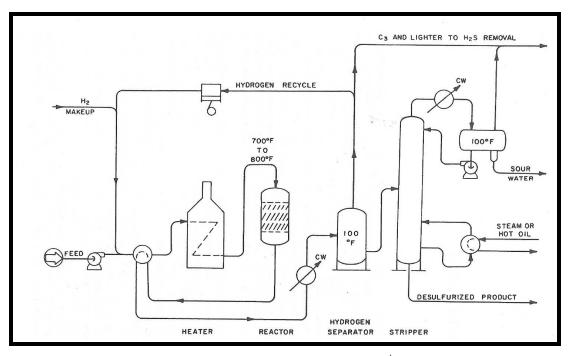


Figure 7. Hydrotreatment unit^{xiv}

API separators separate suspended solids and oil from wastewater streams based on differences in specific gravities between the oil and the wastewater. The differential density is much smaller for oil and wastewater than for suspended solids and wastewater. Thus, the oil globules will rise through the water, suspended solids will sink to the bottom, and the wastewater containing some small amounts of oil particles will exit as the middle layer. After separation, the oil in the top layer is skimmed off and re-processed and the sedimentation from the bottom of the separator is removed using a sludge pump.

The particles settling in an API separator operate on the basis of Stokes Law: the contaminant particles fall through the viscous fluid by their own weight due to a gravitational force. The upward drag of the small particles (which are assumed to be spheres) combine with the buoyancy force balances the gravitational force thereby creating a settling velocity, which is the velocity at which the particles settle. The settling velocity, also termed the terminal velocity, is given by:

$$V_{t} = \frac{2}{9\mu} (\rho_{W} - \rho_{O}) gR^{2}$$
 Equation 1

where V_t is the settling velocity in cm/s, μ is the fluid viscosity in poise, ρ_W is the density of water at the design temperature in g/cm³, ρ_O is the density of oil at the design temperature in g/cm³, g is the gravitational constant (981 cm/s²), and R is the radius of the particle which will be removed in cm. Typically, a particle with a radius no smaller than 0.015 cm, will settle out of the water. A schematic of an API separator is shown below.

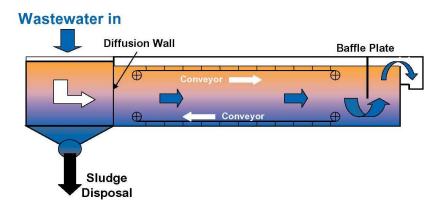
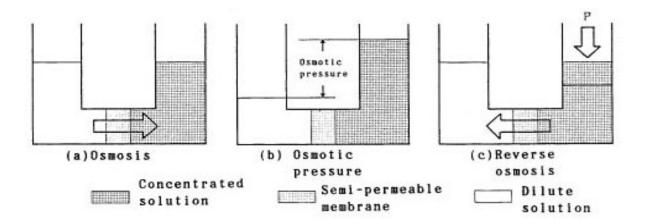



Figure 8. API Separator^{xv}

Reverse osmosis

Theory of reverse osmosis

Reverse osmosis is a process by which dissolved solutes are separated from a solution by a pressure-driven membrane that applies the preferential diffusion for separation. The solution to be separated on one side of the membrane known as the feed is separated by a membrane filled with pure water on the other side. Due to difference in the concentrate between the feed and permeate side instability is created, water then flows from the pure side to the feed to equilibrate the system. The water level in the solution will rise to a point, which is equal to the osmotic pressure, π , of the concentrated solution. When this occurs, the water flux across the membrane to the permeate is equal to that to the feed and equilibrium is reached. At this point of equilibrium, the driving force generated to move the water molecules is then terminated. This process is known as the osmosis process.

Figure 9. Osmosis and reverse osmosis processes

In reverse osmosis, high pressure is applied at the feed and a differential pressure is created between the permeate and feed sides of the membrane. This results into a pressure change, the system then becomes unstable allowing the flow of water from the feed stream through the membrane to the pure water side (permeate). As water passes through the membrane, the solutes are rejected at the membrane surface increasing the concentration of the feed stream which flows out of the process as a stream called the concentrate. The permeate exits the process at atmospheric pressure, while the concentrate stream leaves the membrane element at high pressure is approximately equal to the feed pressure.

The rate of flow of water molecules in a unit area of the membrane (also known as the water flux) through the membrane is the product of the driving force and the transfer rate as defined by the below equation:

$$J_W = k_w \cdot (\Delta P - \Delta \pi) \qquad \qquad \text{Equation 2}$$
 where:
$$J_W = \text{volumetric flux of water } (L/m^2 \cdot s)$$

$$k_W = \text{mass transfer coefficient of water flux } (L/m^2 \cdot s \cdot atm)$$

$$\Delta P = (P_F - P_P) = \text{hydraulic pressure change (atm)}$$

$$\Delta \pi = (\pi_F - \pi_P) = \text{change in osmotic pressure in the feed and}$$
 permeate (atm)

The flow of the solutes (salt) through the membrane is given by the equation below:

$$J_S = k_S \cdot (\Delta C)$$
 Equation 3 where:
$$J_S = mass \ flux \ of \ solute \ (kg/m^2 \cdot s)$$

$$k_S = mass \ transfer \ coefficient \ of \ solute \ (L \cdot S/m^2)$$
 11

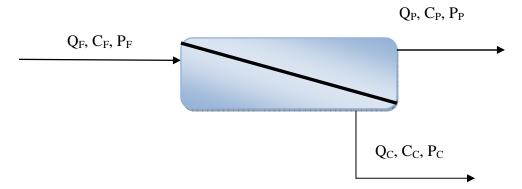
The osmotic pressure of the feed is calculated using van't Hoff law for dilute solutions as in the expression below:

$$\pi = cRT$$
 Equation 4

where : c = concentration of solute in feed/permeate (mol/L)

 $R = gas constant \sim 0.0820578 (L \cdot atm)/(g - mol \cdot K)$

T = temperature of solution (K)


Membrane material

The force directed towards the membrane for the separation of solutes from water based on the physical and chemical properties of the solutes to be removed and the material of the membrane. The resistance to flow through the membrane is inversely related to the thickness which means that for high efficiency, the membrane has to be extremely thin. For a reverse osmosis, the thickness of the membranes ranges from about 0.1 to 2 µm. This extreme size of the material makes the membrane lack structural reliability as a result, membranes usually comprise of several layers with low porosity. The ideal material is one that can produce a high flux without clogging or fouling and is physically durable and chemically inactive. The materials most widely used in reverse osmosis are the cellulosic derivatives and polyamide derivatives (Crittenden).

Process application in wastewater treatment

In wastewater treatment process, reverse osmosis is a technology used for the removal of various inorganic contaminants. However, the main problem with the reverse osmosis technologies in the waste water treatment industry is the disposal of the concentrates and fouling that occurs on the membrane over a period of time as pressure is increased. However, to prevent this from occurring, the wastewater is pretreated by scaling which adjust the PH value, changing the solubility of the precipitates of inorganic contaminants that could be formed during operation (Hendricks).

Mathematical model

A mass balance around the membrane pressure vessel process results to the following equations: Membrane mass balance

$$Q_F = Q_C + Q_P$$
 Equation 5

$$C_F Q_F = C_C \cdot Q_C + C_P \cdot Q_P$$
 Equation 6

where:

 C_C = concentrate of solute in concentrate water (kg/m³)

 C_P = solute concentrate in permeate water (kg/m³)

 C_F = solute concentrate in feed water (kg/m³)

 Q_P = permeate flow (m³/s)

 $Q_F = \text{feed flow } (\text{m}^3/\text{s})$

 $Q_C = concentrate flow (m^3/s)$

The flow rate of water molecules in the permeate is related to the water flux by the equation shown below:

$$Q_P = J_W x$$
 Area of membrane Equation 7

The flux of the solutes is also related to the flux of water by the equation below:

$$J_S = C_P \cdot J_W \qquad \qquad \text{Equation 8}$$

The combination of the solute flux in equations 2 and 8, and rearranging the equation, the concentration of salts in the treated water (permeate) C_P, was determined. The final equation that relates the concentration out at the permeate was found to be:

$$C_P = C_F - B \cdot N$$

Equation 9

where

N: the number of membranes

B (found using Mathcad):

$$= \frac{\left(\left(C_{F}RTk_{w}\right)^{2} + 2C_{F}RTk_{w}\left(3k_{S} k_{w}P_{F} k_{w}P_{P}\right) + k_{S}^{2} + 2k_{S}k_{w}\left(P_{F} P_{P}\right) + k_{w}^{2}\left(P_{F}^{2} 2P_{F}P_{P} + P_{P}^{2}\right)\right) \frac{k_{S}}{2} \frac{k_{W}P_{F}}{2} + \frac{k_{W}P_{P}}{2} + \frac{C_{F}RTk_{W}}{2}}{RTk_{W}}$$

The effect of the design parameters, N, k_W , and k_S , and the feed conditions T and P_F are summarized in the table below:

increases
decreases
increases
decreases
decreases

Table 2. Effect of feed conditions and design parameter on effluent concentration

From the above table, it can be seen that the operating temperature has to be low in order to obtain a high degree of wastewater purity. Also, the salt permeability which is the ability of the salt to pass through the membrane to the permeate has to be low. As expected, the salt permeability affects the purity of water showing that if the porous membrane used for the process is liable to absorb the salt molecules, then the amount of salt in the permeate will be high. This renders the treatment system inefficient, and therefore the material of the membrane used for the process is highly important. An increase in the number of membranes used, will give a reduction in the contaminants found in the effluent stream as desired. Therefore, a high number of membranes should be used for the treatment process. This is highly recommended because the membrane (whichever type) has the ability to foul if the amount of contaminants in the feed is high and therefore gets attached to the surface.

The table below summarizes the optimum conditions and design parameters to achieve high degree of purity in the wastewater.

Parameters and effects			
Feed temperature, T (K)	Decrease temperature, negligible effect at extreme low temperature		
Number of membranes, N	Increase the number used, high degree of purity can be attained		
Salt permeability, Ks (L/m2-atm-s)	Choose material with low salt permeability, possibly zero		
Water permeability, Kw(L/m2-atm-s)	Choose material with high water permeability		
Feed pressure, PF (atm)	Increase the pressure at the feed to allow high degree of diffusion at membrane		

Table 3. Feed conditions and design parameters to be considered for process design

Activated Carbon Adsorption

Theory of adsorption

Adsorption is a process by which molecules of substances present in a liquid phase are attached on the surface of a solid matter and removed from the liquid phase. The process involves the molecules in the gas or liquid phase diffuse to the surface of the solid and stay there by chemical bonding or weak intermolecular forces. The solid phase particle which provides the bonding sites is known as the adsorbent and the substance in the adsorbed state is called the adsorbate.

There are two main types of adsorption which are the physisorption and the chemisorption. The physisorption is when the adhesive forces are of physical nature and adsorption is relatively weak and the amount of heat evolved for a mole of gas adsorbed is usually less than 20 kJ (Laidler). For the chemisorption, the adsorbed molecules are bonded to the surface by covalent forces which are stronger than intermolecular forces between the molecules of the adsorbate. In chemisorption which is usually applied in industries, after the surface has been covered with a monolayer of adsorbed molecules, it is said to be saturated and

additional adsorption occurs on the layer that already exists. However, Langmuir emphasized that adsorption formation is of unimolecular layer and once formed adsorption ceases but multilayer can exist for physisorption.

Adsorbent

Adsorbents used in industries are generally synthetic microporous solids: activated carbon, molecular sieve carbon, activated alumina, silica gel, zeolites and bleaching clay. The most important characteristics of adsorbents are pore volume, the pore distribution and the geometry of the particles of the adsorbent. The table below shows the properties of the commonly used activated carbon.

Properties of Activated Carbon						
Droporty		Activated	Activated Carbon			
Property	Filtrasorb 100	Filtrasorb 200	Filtrasorb 300	Filtrasorb 400		
Surface area, BET (m²/g)	800-900	800-900	950-1050	1000-1200		
Apparent density (g/mL)	no data	≥0.48	≥0.48	≥0.44		
Wetted density (g/mL)	1.4-1.5	1.4-1.5	1.3-1.4	1.3-1.4		
Effective size (mm)	0.8-1.0	0.55-0.75	0.8-1.0	0.55-0.75		
Uniformity coefficient	2.1	1.9	2.1	1.9		
Abrasion number	7 5	75	78	7 5		

Table 4. Properties of Activated Carbon

Process description

At equilibrium, the rate of adsorption on the surface of the adsorbent is equal to the rate at which desorption occurs. When this occurs, an increase in the residence time of the adsorbate in the column of adsorbate has no effect. The adsorption process can be described as in the usual chemical reaction as shown below:

$$C + X \leftrightarrow C \cdot X$$
 Equation 10

where:

C = adsorbent concentration (kg/m³)

 $C \cdot X = \text{concentration of the sites occupied by adsorbate molecules (kg adsorbate adsorbed/kg adsorbent/m³ solution)$

X = adsorbate sites not occupied per unit adsorbent in a unit volume (kg unoccupied adsorbate/kg adsorbent/m³ solution)

At equilibrium, the rate of adsorption and desorption are equal. The equilibrium constant can be then introduced as below.

$$K_{eq} = K = \frac{[C \cdot X]}{[C] * [X] *}$$
 Equation 11

where: $K_{eq} = K = adsorption equilibrium constant$ $[C]^* = adsorbate concentrate, C, at equilibrium$ $(kg adsorbent/m^3 solution)$

Langmuir Isotherm

Adsorption isotherm relates the amount of substance attached to the surface of the adsorbent to the amount in the solution at a defined temperature. The Langmuir isotherm which is used for the process assumes that the surface of the activated carbon is homogeneous and as mentioned previously adsorption occurs in a single layer.

$$\overline{X} = \frac{X_{\text{max}} KC}{KC}$$
 Equation 12

where: $K = Langmuir equilibrium constant = K_{eq}$

 X_{max} = maximum amount of adsorbate in solid phase per adsorbent (kg adsorbate/kg adsorbent)

C = concentration in solution at equilibrium (kg adsorbate/m³ solution)

It is assumed that the internal (pore) diffusion is rate controlling in the adsorption process. It is also assumed that the geometry of the activated carbon particle is spherical and all the assumptions made for the Langmuir isotherm is also used. Finally, the bed is assumed to be a batch process in a tank of volume, V.

Mathematical model

To design the activated carbon adsorption process, the fixed bed was chosen rather than the slurry adsorption. This is due to the fact that the fixed bed is more efficient and the bed can be regenerated not disposed as in the case of slurry adsorption.

Assuming the process is a plug flow of the wastewater through the bed is at a constant interstitial velocity, there is no axial dispersion and the temperature is constant throughout the

process (isothermal); the mass balance on the solute flowing through a bed length z at differential length Δz is given by the equation:

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial z} + \frac{(1 - \varepsilon)}{\varepsilon} \cdot \frac{\partial q}{\partial t} = 0$$
 Equation 13

However, when the axial dispersion and transfer of mass from the solute to the activated carbon is not neglected as initially assumed, the equation above is modified to a partial differential which is given below:

$$-D_{L}\frac{\partial^{2}C_{b}}{\partial z^{2}} + V\frac{\partial C_{b}}{\partial z} + C_{b}\frac{\partial V}{\partial z} + \frac{\partial C_{b}}{\partial t} + \rho_{p}\left[\frac{1-\varepsilon}{\varepsilon}\right] \cdot \frac{\partial q_{p}}{\partial t} = 0 \qquad \text{Equation 14}$$

In the above equation, the D_L is known as the term which accounts for the axial dispersion with diffusion to the activated carbon bed, the second term is related to the change in velocity of flow axially. This equation has to be solved numerically, but an analytical solution can be found when the equation is made simple. Klinkenberg approximation was used to determine the solution with certain assumptions which include that the axial dispersion can be ignored, the fluid velocity is constant and the mass transfer model is linear. The Klinkenberg approximation is as below:

$$\frac{C}{C_F} \approx \frac{1}{2} \left[1 + erf \left(\sqrt{\tau} - \sqrt{\varepsilon} + \frac{1}{8\sqrt{\tau}} + \frac{1}{8\sqrt{\varepsilon}} \right) \right]$$
 Equation 15

where:
$$\varepsilon = \frac{kKz}{u} \left[\frac{1-s}{s} \right]$$
 Dimensionless distance coordinates
$$\tau = k \left[t - \frac{z}{u} \right]$$
 Dimensionless time coordinate corrected for displacement

Using this formula, the effluent concentration was estimated to be approximately zero based on the residence time in the column.

Chevron waste water treatment

Chevron waste water treatment (WWT) strips hydrogen sulfide and ammonia from sour water generated in petroleum refineries^{xvi}. The two-stage stripping process produces separate purified ammonia and hydrogen sulfide streams, wherein the hydrogen sulfide can be sent to sulfur recovery units, the ammonia can be sold commercially or used again in Selective Catalytic or Selective Non-catalytic Reduction units in the refinery, and the purified wastewater can either be sent to end-of-pipe treatments or reused. A process-flow diagram for a Chevron water treatment plant is shown below.

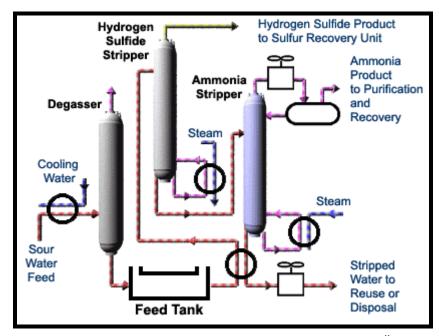
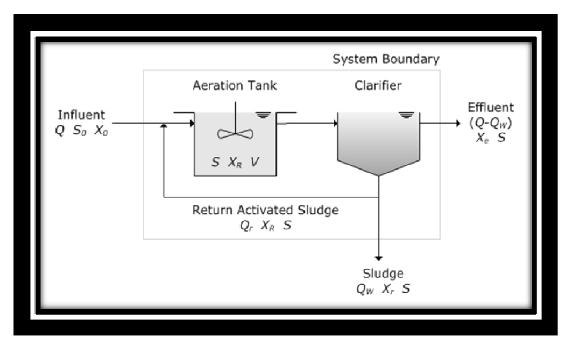


Figure 10. Chevron Wastewater Treatment Plant^{xvii}


Biological treatment

Biological treatment operates on the idea that microorganisms present in wastewater will feed on the carbonaceous organic matter in the wastewater and repopulate in an aquatic aerobic environment. With a sufficient oxygen supply and an organic material food supply, the bugs (bacteria) will consume and metabolize the organic waste and transform it into cell mass, which settles in the bottom of a settling tank.

Most biological treatment plants have two forms of operation: primary and secondary. Primary treatment involves the physical removal of solids and secondary treatment involves the biological removal of dissolved solids^{xviii}. Secondary treatment mainly uses biological treatment processes, whereby the introduction of microorganisms to the system creates solids which precipitate out and are collected in the settling tank. Three common options for secondary treatment include:

- I. Activated sludge
- II. Trickling filters
- III. Lagoons

The treatment that will be modeled in this project is the activated sludge system. The wastewater influent is sent through an aeration tank where air is pumped through the bottom of the tank and rises through the water in the form of bubbles. The purpose for this is two-fold: air provides oxygen to the water and creates turbulent conditions ideal for organic material consumption^{xix}. The wastewater is then sent through what is called a secondary clarifier. The clarifier is a settling tank that separates the used cellular material from the treated wastewater. The cellular material sinks to the bottom of the basin whereby it is either sent back to aeration tank to assist in producing new bacteria or sent as sludge for anaerobic treatment. A schematic of the process is shown on the next page in Figure 11.

Figure 11. Activated sludge system^{xx}

where:

Q =	flowrate of influent	$[m^3/d]$
$Q_W \; = \;$	waste sludge	$[m^3/d]$
$Q_r =$	flowrate in return line from clarifier	$[m^3/d]$
V =	volume of aeration tank	$[m^3]$
$S_0 =$	influent soluble substrate concentration (bsCOD)	$[m^3/d]$
S =	effluent soluble substrate concentration (bsCOD)	[BOD g/m ³] or [bsCOD g/m ³]
$X_0 =$		_
	concentration of biomass in influent	[g VSS/m ³]
$X_R =$	concentration of biomass in influent concentration of biomass in return line from clarifier	[g VSS/m ³] [g VSS/m ³]

Simulation Methods

Several different methods were used in this study to simulate real-life water-using and water treating process units. PRO/II, *Steady*, Mathcad, and Excel were used to generate points by varying inlet system parameters, like temperature, pressure, flowrate, etc. These points were then analyzed to find the nature of correlations between components varied and outlet concentration. The Casestudy function in PRO/II has the capability of varying more than one inlet parameter at once (maximum used in this study was six) and this eased the workload. The Excel files made by the researchers were used mostly for cost analyses purposes.

PRO/II

The primary simulation program used in this study was PRO/II. Its proven accuracy in predicting results from specifications of inlet parameters and its applicability to the processes currently being modeled were the reasons for its use. The H₂S stripper, NH₃ stripper, amine sweetening, and atmospheric columns were modeled in PRO/II as distillation columns. The H₂S differed slightly from the other distillation columns in that it contained only a partial reboiler and not a partial condenser. A snapshot of the crude oil distillation unit is shown in Figure 12.

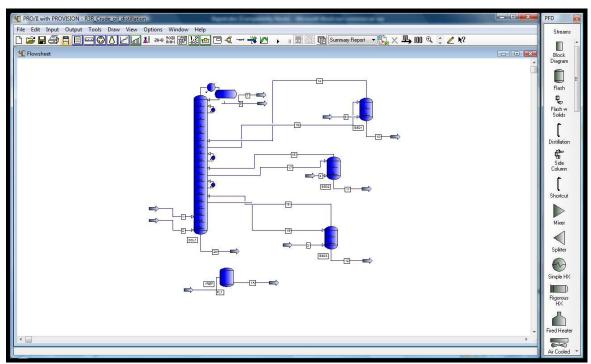
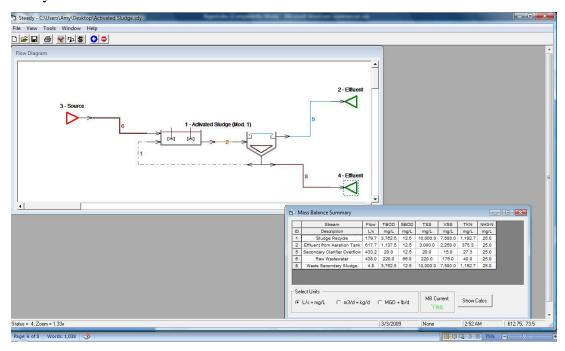



Figure 12. Snapshot of Pro/II crude oil distillation unit

Steady

The simulation program used to model the activated sludge system was a computer program called *Steady* is a steady-state wastewater treatment plant modeling program developed by researchers at the University of Texas that characterizes wastewater in terms of water quality assessment procedures, like BOD₅, TSS, VSS, TKN, and NH₃-N. The model assumes steady-state conditions for influent contaminants to a plant and calculates a plant-wide mass balance and general dimensions of the unit processes involved. *Steady* has the capability of modeling a full activated sludge system, complete with a source stream, aeration tank, clarifier tank with recycle, sludge stream, and a wastewater effluent stream. A snapshot of the file made in this study is shown below.

Figure 13. Snapshot of *Steady* file with activated sludge model and mass balance summary

Mathcad

Mathcad was used to generate points for the API separator and the reverse osmosis system. System parameters and inlet stream variables were varied and points were generated to be input to GAMS as tables. A screenshot of the Mathcad file simulating the API separator is shown in Figure 14.

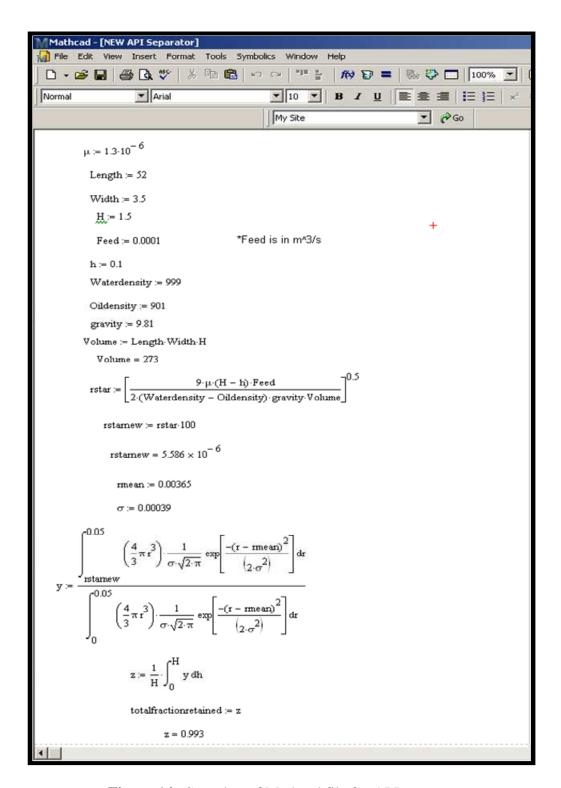
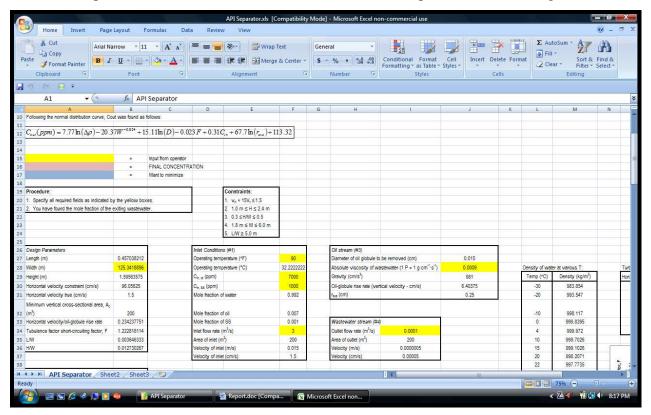



Figure 14. Snapshot of Mathcad file for API separator

Excel

Excel files were made for the API separator and the Chevron Wastewater Treatment plant to model the processes and the cost of the treatment unit. A snapshot is shown in Figure 15.

Figure 15. Snapshot of API separator Excel file

Simulations were run in PRO/II, *Steady*, Mathcad, and Excel, varying any and all parameters that could be varied. Inlet parameters in PRO/II were varied based on the model being used and they include, but are not limited to, column efficiency, number of trays, inlet temperature, inlet concentration, pressure, reboil and/or reflux ratio, and feed flowrate. A case study was performed for each simulation in PRO/II and results were exported to Microsoft Excel. Graphs plotting outlet concentration (dependent variable) vs. each inlet parameter (independent variable) were then generated to find the relationship between the two variables. Whatever shape the points in the graph appeared to take was the basis of determination of which type of regression (linear or non-linear) would be performed. So, for instance, if the graph appeared to follow a straight line, a linear regression was performed. If the graph had some

curvature to it, a non-linear regression (including exponential fit, power law, or logarithmic) was performed. The regression which produced the highest coefficient of determination, R^2 , was kept and regarded as the best fitting line. The graph with the highest coefficient of determination was kept because it represented the smallest different between the actual and predicted values for that curve. All R^2 and regressions were performed in and by Excel algorithms.

After graphs were generated in Excel, a model was guessed that represented an outlet contaminant concentration as a function of all of the aforementioned inlet variables. This model was essentially based on adding together all of the best fit equations of the component curves that were found to have an effect on effluent concentration. For instance, if C_{out} were found to depend on pressure in the form $C_{out} = a*ln(P)^b$ as determined by non-linear regression in Excel and temperature in the form $C_{out} = c*T + d$ as determined by linear regression in Excel, then the resulting model would be $C_{out} = a*ln(P)^b + (c*T + d)$. Parameters a-d were guessed to have the same values as each component curve did in Excel. All data points and the guessed model were entered into Polymath and Polymath was left to perform a final non-linear regression.

It's worth mentioning that although it's probable that these parameter effects are not additive and probably have some co-dependence on each other, it will not matter in obtaining an end result. There is not one right answer in the final model. For any equation guessed as a model, Polymath takes the non-linearities into account if one uses non-linear data point regression. As long as the numbers converge and the simulation program used to generate the data points is accurate, the predicted model will be accurate as well. All results obtained in this study converged under the maximum number of iterations.

Results

Two types of models were generated in this study: outlet concentration models and equipment cost models. The outlet concentration models describe the outlet contaminant concentration being investigated in units of parts per million (ppm) as a function of inlet parameters such as feedrate (ton/hr), pressure (psia), temperature (°F), number of trays (N), tray efficiency (η) , etc. These types of models were made for the API separator, H_2S stripper, NH_3 stripper, biological treatment (activated sludge), activated carbon adsorption treatment, reverse

osmosis, and the atmospheric distillation column. The equipment cost models were made for the API separator, Chevron Wastewater Treatment plant, activated sludge, and the reverse osmosis units. They describe process machinery cost in terms of dimensional parameters (length, width, height), number of trays, reboil ratio, etc. Results are shown in the proceeding sections.

Outlet Concentration models

I. API separator

The API separator was modeled under the assumption that all of the particles coming into the separator follow a normal distribution, also called a Gaussian distribution. All particles ranged in size from miniscule to some maximum measured size and the majority of particles lay somewhere near the average mean particle size. Outliers exist (i.e. particles very large or very small), but they are present in small quantities and of course, no particles are seen beneath the z = 0 line on the Gaussian curve. Particles cannot have a negative radius. As the contaminant particle enters the separator, it has a horizontal velocity v_x as well as a vertical settling velocity v_y . The time for a particle to reach the other end of the API Separator (t_L), that is to travel its length L is determined by:

$$t_L = \frac{L}{v_r}$$
 Equation 16

But v_x is given by the flowrate F divided by the cross sectional area A given by the product of width and height, that is A = W*H. Therefore

$$t_L(s) = \frac{L}{F/\{H \cdot W\}} = \frac{L \cdot H \cdot W}{F} = \frac{V}{F}$$
 Equation 17

where V is the volume of the API separator. At the same time, the time that a particle that is at height h at the beginning of the separator will reach the top is:

$$t_h(s) = \frac{(H - h)}{v_y}$$
 Equation 18

The settling velocity of a particle with radius r is given by Stokes Law seen previously in Equation 1:

$$v_{y} = \frac{2}{9\mu} (\rho_{W} - \rho_{o}) gr^{2}$$
 Equation 19

Thus:

$$t_h = \frac{9\mu(H - h)}{2(\rho_W - \rho_O)gr^2}$$
 Equation 20

If we now equate $t_h = t_L$, we will obtain the radius of the particle that will exactly reach the top, if started at height h.

$$t_h = \frac{9\mu(H - h)}{2(\rho_W - \rho_O)gr^2} = \frac{V}{F} = t_L$$
 Equation 21

The radius is then given by:

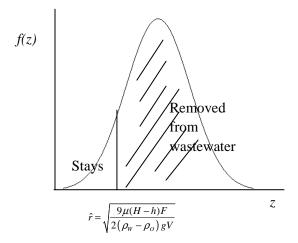
$$\hat{r} = \sqrt{\frac{9\mu(H - h)F}{2(\rho_w - \rho_o)gV}}$$
 Equation 22

This equation for \hat{r} was assigned as the critical radius, above which, all particles separate and will be removed from the wastewater (and stay in the API separator). Below which, particles are carried with the wastewater effluent stream (particles smaller that \hat{r} will stay in the exiting water). Finally, assuming a Gaussian distribution of particle sizes, we find that the fraction of particles y_h that started at height h that are retained is:

$$y_{h} = \frac{\int_{\hat{r}}^{\infty} \left(\frac{4}{3}\pi r^{3}\right) e^{\frac{-(r-r_{s})^{2}}{\sigma^{r}}} dr}{\int_{0}^{\infty} \left(\frac{4}{3}\pi r^{3}\right) e^{\frac{-(r-r_{s})^{2}}{\sigma^{r}}} dr}$$
 Equation 23

Being a normal density function, finding the mass of contaminant at any given time involves a simple multiplication of the density (g/cm³) and the volume (cm³). Now, the particles are uniformly distributed in height. Then, the total fraction of contaminants removed is:

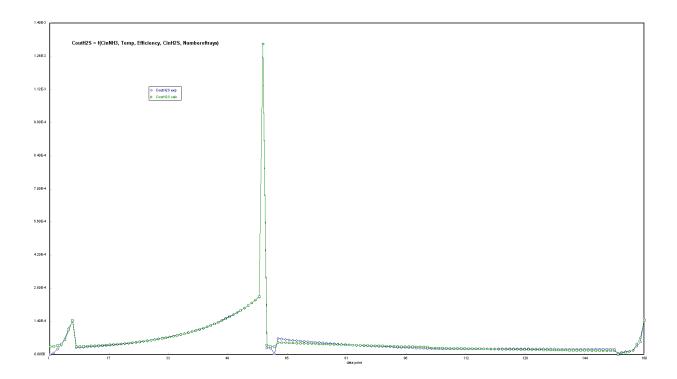
$$z = \int_{0}^{H} y_h \cdot \frac{1}{H} dh$$
 Equation 24


Therefore,

$$z = \frac{1}{H} \int_{0}^{H} \left\{ \frac{\int_{\sqrt{\frac{9\mu(H-h)F}{2(\rho_{W}-\rho_{O})gV}}}^{\infty} \left(\frac{4}{3}\pi r^{3}\right) e^{\frac{-(r-r_{s})^{2}}{\sigma^{r}}} dr}{\int_{0}^{\infty} \left(\frac{4}{3}\pi r^{3}\right) e^{\frac{-(r-r_{s})^{2}}{\sigma^{r}}} dr} \right\} dh$$
 Equation 25

The outlet concentration of organics is then given by:

$$c_{out}^{Org} = (1-z)c_{in}^{Org}$$
 Equation 26

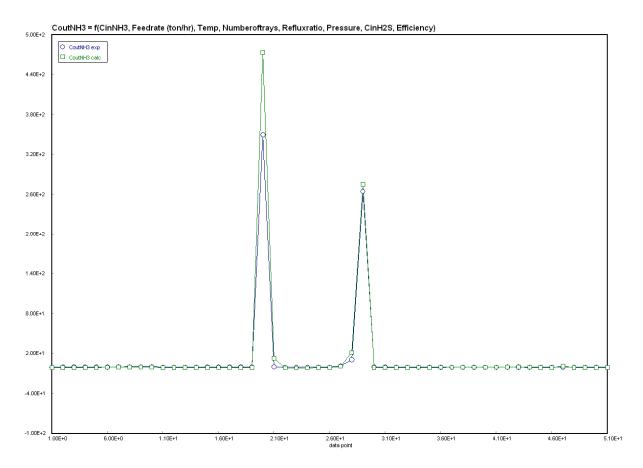

We conclude that $c_{out}^{Org} = c_{out}^{Org} (c_{in}^{Org}, V, H)$. In doing this we are assuming that the distribution of particles is known (it is Gaussian with known mean and std. dev). In addition, an underlying assumption exists that temperature does not significantly affect the densities of water and the organic phase. A pictorial representation of the normal density function is seen below.

The area that is shaded is the percentage of the contaminants (oil or suspended solids) removed from the influent wastewater. All particle sizes are represented in the normal distribution, thus the area under the Gaussian curve is 1, where 1 represents the entire range of contaminants sizes from 0 to r_{max} . The table generated from simulating the numerical integration in Mathcad is seen in Appendix I.

II. Chevron Wastewater Treatment

As stated before, the Chevron Wastewater Treatment consists of a hydrogen sulfide stripper followed by an ammonia stripper. The H_2S , with a partial reboiler, strips H_2S from the influent wastewater leaving mostly H_2S and a negligible amount of ammonia in the vapor stream. The wastewater then enters into an ammonia stripper, containing a partial reboiler and a partial condenser, where ammonia is stripped from the wastewater. The curve for the hydrogen sulfide stripper is shown below.

From points 1-11, the mole fraction of hydrogen sulfide coming into the stripper was varied. From points 12-21, the number of trays was varied. From points 22-55, tray efficiency was varied from 0.56 through 0.89. From points 56-177, the case study function was used in Pro/II where the feedrate was varied by increments of 1 kg/hr and the result was the outlet concentration of H₂S. From points 178 on, the inlet temperature was varied. It's important to mention that reboiler duty and inlet pressure were run as parameters in the case study in Pro/II, but the outlet concentration of H₂S was found to not be affected by it. A model was guessed and the result of non-linear regression in Polymath is as follows:


$$C_{out,H_2S}(ppm) = 0.0024e^{0.079C_{in,NH_3}} - e^{-0.039T} - 0.014\eta^{-0.138} + (1.011x10^{-4}) \cdot C_{in,H_2S}^{2} - 0.0012 \cdot C_{in,H_2S} + 21,700(Number of trays)^{-7.077} + 0.0158$$

Equation 27

The Polymath report for H₂S is seen in Appendix I.

From Figure 10 on page 19, it is clear that the liquid stream that exits from the bottom of the hydrogen sulfide stripper is the entering stream ammonia str9pper. Thus, the outlet concentration of the H₂S stripper is the inlet concentration of the NH₃ stripper. The component

H₂S was the contaminant that was modeled in this study. The non-linear regression graph is shown below.

In this case, case study function was used rather than single-handedly generating points, which is tedious. A step size of 100 variations was specified and run in PRO/II. Inlet parameters were specified to be overall column tray efficiency, feedrate (ton/hr), inlet pressure (psia), reflux ratio (by changes of 0.5), and inlet temperature (degrees Fahrenheit) was varied. The result was outlet concentration of H_2S and given in units of ppmw.

$$\begin{split} C_{out,NH_3}\left(ppm\right) &= 0.00068F^2 - 0.0065F - 0.057C_{in,NH_3} + 1546e^{-0.697N} + 0.00008069e^{0.025T} + 0.0613RFR \\ &- 4436000P^{-2.941} - 0.527\eta^2 - 0.752\eta + 7.105C_{in,H_2S}^{0.47} + 0.238 \end{split}$$

Equation 28

An inequality exists that must be able to find optimal column diameter based on flowrate. From Seader and Henley's *Separation Process Principles*^{xxii}:

$$D_T = \left[\frac{4VM_V}{fU_f \pi (1 - A_d / A)\rho_V} \right]$$
 Equation 29

where: V = molar vapor flow rate

 M_V = molecular weight of the vapor

f =the fraction of flooding, typically taken as 0.80

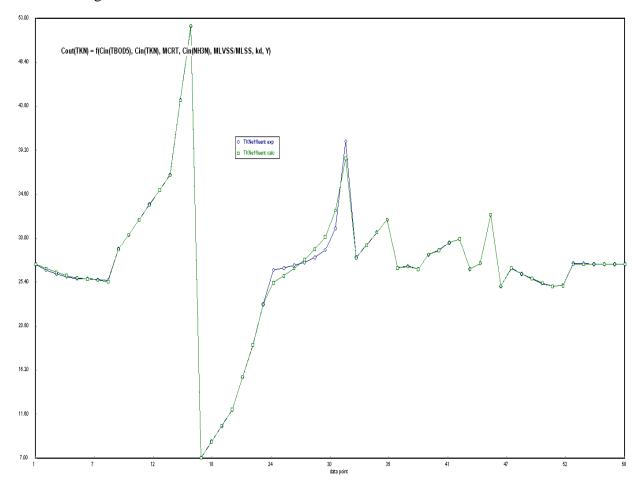
$$U_{f} = \text{flooding velocity} = \left(\frac{4d_{p}g}{3C_{D}}\right)^{\frac{1}{2}} \cdot \left(\frac{\rho_{L} - \rho_{V}}{\rho_{V}}\right)^{\frac{1}{2}}$$

 ρ_V = density of the vapor, ρ_L = density of the liquid

 d_p = particle diameter, g = gravity, C_D = drag coefficient

$$\frac{A_d}{A} = \begin{cases} 0.1, & F_{LV} \le 0.1 \\ 0.1 + \frac{(F_{LV} - 0.1)}{9} & 0.1 \le F_{LV} \le 1.0 \\ 0.2, & F_{LV} \ge 1.0 \end{cases}$$

$$F_{LV} = \left(\frac{LM_L}{VM_V}\right) \left(\frac{\rho_V}{\rho_L}\right)^{0.5}$$
 Equation 30

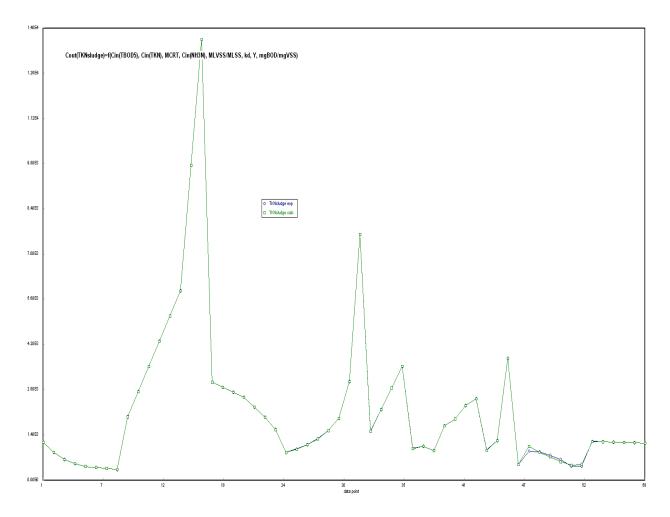

So, the procedure for determining this inequality is to first calculate F_{LV} (abscissa ratio) and then choose one of three options:

Case	Inequality that must be satisfied	Result
1	$F_{LV} = \left(\frac{LM_L}{VM_V}\right) \left(\frac{\rho_V}{\rho_L}\right)^{0.5} \le 0.1$	$D_{T} = \left[\frac{4VM_{V}}{0.80 \cdot \left[4d_{p}g / (3C_{D}) \right]^{\frac{1}{2}} \cdot \left[(\rho_{L} - \rho_{V}) / \rho_{V} \right]^{\frac{1}{2}} \cdot \pi \cdot 0.90 \cdot \rho_{V}} \right]$
2	$0.1 \le F_{LV} = \left(\frac{LM_L}{VM_V}\right) \left(\frac{\rho_V}{\rho_L}\right)^{0.5} \le 1.0$	$D_{T} = \left[\frac{4VM_{V}}{0.80 \cdot \left[4d_{p}g / (3C_{D}) \right]^{1/2} \cdot \left[(\rho_{L} - \rho_{V}) / \rho_{V} \right]^{1/2} \cdot \pi \cdot \left[8 - \left(\frac{LM_{L}}{VM_{V}} \right) \left(\frac{\rho_{V}}{\rho_{L}} \right)^{0.5} \right] / 9 \cdot \rho_{V}} \right]$
3	$F_{LV} = \left(\frac{LM_L}{VM_V}\right) \left(\frac{\rho_V}{\rho_L}\right)^{0.5} \ge 1.0$	$D_{T} = \left[\frac{4VM_{V}}{0.80 \cdot \left[4d_{p}g / (3C_{D}) \right]^{1/2} \cdot \left[(\rho_{L} - \rho_{V}) / \rho_{V} \right]^{1/2} \cdot \pi \cdot 0.80 \cdot \rho_{V}} \right]$

Table 5. Total column diameter as a function of liquid and vapor flowrates

III. Biological Treatment (Activated Sludge)

The most commonly used biological treatment is the activated sludge process^{xxiii}, where microorganisms present in wastewater feed on the organic constituents thereby purifying the water. Since activated sludge is the most common process, it was the one modeled. As mentioned before, the program *Steady* developed by professors at the University of Texas was used to simulate an activated sludge process. The activated sludge simulation required outlet concentrations of TBOD₅ (mg/L) and SBOD (mg/L) to be specified, and since no nitrification was occurring in the process, the only outlet concentration that varied was the outlet concentration of the TKN (mg/L). This was the contaminant that was modeled. Results from the non-linear regression are shown below.


From points 1-8, inlet concentration of TBOD₅ (mg/L) was varied. From points 9-16, inlet concentration of TKN (mg/L) was varied. From points 17-23, inlet concentration of NH₃—N (mg/L) was varied. From points 24-31, the Y value, which is the biomass yield, was varied.

Biomass yield is the grams of biomass produced per gram of substrate utilized [g VSS/g COD used]. From points 32-38, k_d was varied and k_d is the endogenous decay coefficient [g VSS/g VSS·d]. From points 39-45, the mean cell residence time (MCRT), the amount of time a contaminant stays in the process, was varied. From points 46-52, the ratio of mixed liquor volatile suspended solids to mixed liquor suspended solids was varied. The final result is given below:

$$C_{\mathit{TKN,\,effluent}}(ppmw) = -135C_{_{\mathit{in,\,TBOD}_{5}}}^{0.01} + 0.16C_{_{\mathit{in,\,TKN}}} + 0.84C_{_{\mathit{in,\,NH}_{3}-N}} - 2287Y^{0.0026} + 13.4k_{_d} + 0.08M\mathit{CRT} - 12.25e^{-0.27\left(\frac{\mathit{MLVSS}}{\mathit{MLSS}}\right)} + 2436V_{_{\mathit{in,\,TBOD}_{5}}}^{0.01} + 0.16C_{_{\mathit{in,\,TKN}}}^{0.01} + 0.08M_{_{\mathit{in,\,TKN}}}^{0.01} + 0.08M_{_{\mathit{in,\,TKN}}}^{0.0026} + 0.08M_{_{\mathit{in,\,TKN$$

Equation 31

The sludge that exits from the secondary clarifier is rich in the microorganisms used to eat the contaminants. This stream was also modeled to aid the pre-treatment process for this stream. Regression graph results are shown below:

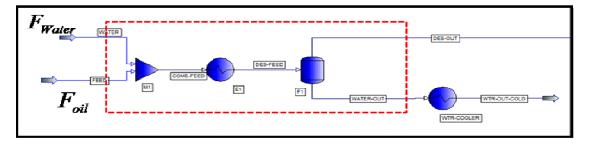
Parameters were varied in the same manner as for the effluent wastewater stream, however, an extra parameter was found to make a difference in outlet TKN concentration; [mgBOD/mg VSS]. The outlet TKN concentration in the exiting sludge is:

$$C_{TKN, studge}(ppmw) = 3.436x10^{5}C_{in, TBOD_{5}}^{-1.057} + 77.9C_{in, TKN} - 77C_{in, NH_{3}-N} + 762.5Y^{-0.998} + 6684.5k_{d} + 41.8MCRT - 99.8e^{\frac{1021.6\left(\frac{MLVSS}{MLSS}\right)}{MLSS}} - 75.9\frac{mgBOD}{mgVSS} - 3663.7m^{-1}$$

Equation 32

The Polymath report can be seen in Appendix I for the activated sludge process.

IV. Desalter


Finding the outlet H_2S concentration in water was the first task in modeling the desalter. In order to accomplish this, a contaminant mass balance was performed for H_2S :

$$F_{oil}x_{_{H_2S,im}}^{Oil} + F_{Water}x_{_{H_2S,im}}^{Water} = F_{oil}x_{_{H_2S,out}}^{Oil} + F_{Water}x_{_{H_2S,out}}^{Water}$$
 Equation 33

A partition coefficient was then applied because water and crude oil are vigorously mixed prior to entering the desalter and so a two-phase mixture exists of water (aqueous) and oil (organic). H₂S partitions between these two phases and exits with the water. The partition coefficient is a function *solely* of temperature and is defined as the differential solubility of H₂S in water and oil:

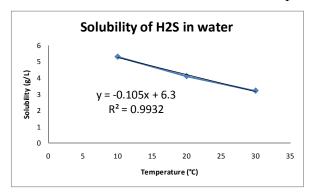
$$K(T) = \frac{x_{H_2S}^{Water}}{x_{H_2S}^{Oil}}$$
 Equation 34

A schematic is shown below for process flow of a desalter. However, PRO/II was NOT used in the derivation of the desalter equation. The diagram in Figure 16 is used for aesthetic and description purposes only.

Figure 16. PRO/II file for desalter

Rearranging Equation 16 to solve for $x_{H2S, out}$ and combining with Equation 17:

$$x_{H_{2}S,out} = \frac{F_{Oil} x_{_{H_{2}S,in}}^{Oil} + F_{Water} x_{_{H_{2}S,in}}^{Water}}{F_{Water} + \frac{F_{Oil}}{K(T)}}$$
Equation 35


From http://www.atsdr.cdc.gov/toxprofiles/tp114-c4.pdf, the solubility of H2S in water at various temperatures is:

at	10	$^{\circ}\mathrm{C}$	5.3	g/L
at	20	°C	4.1	g/L
at	30	°C	3.2	g/L

Also, the solubility of H2S in oil at various temperatures is:

at 20 °C 6
$$g/L$$
 at 100 °C 3 g/L

Plots of these solubilities as a function of temperature is seen as:

Solubility of H2S in oil y = -0.0375x + 6.75 $R^2 = 1$ Temperature (°C)

Figure 17. Solubility of H_2S in water

Figure 18. Solubility of H₂S in oil

The solubilities of H₂S in water and oil are then:

$$K(T) = \frac{x_{H_2S}^{Water}}{x_{H_2S}^{Oil}} = \frac{-0.105T + 6.3}{-0.0375T + 6.75}$$
 Equation 36

Finally,

$$x_{H_2S,out} = \frac{F_{Oil} x_{H_2S,in}^{Oil} + F_{Water} x_{H_2S,in}^{Water}}{F_{Water} + F_{Oil} \left(\frac{-0.0375T + 6.75}{-0.105T + 6.3}\right)}$$
Equation 37

Finding the outlet salt concentration in water from the desalter was the second task in modeling the desalter. A paper written by Gary W. Sams and Kenneth W. Warren titled *New Methods of Application of Electrostatic Fields* prepared for presentation at AICHE Spring National Meeting was referenced. In a desalter, a suspended water droplet between a pair of electrodes is acted on by five forces:

- 1. Gravity
- 2. Drag
- 3. Electrophoretic
- 4. Di-electrophoretic
- 5. Dipole

The following diagram shows the five forces at work in a desalter:

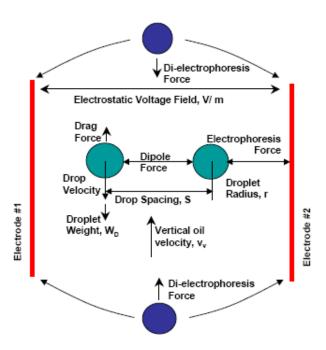


Figure 19. Forces acting on a water droplet inside of a desalter

Gravity and drag forces are taken into account when using Stokes Law (see Equation 1) and in order to maximize desalting process performance, electrostatic forces must enhance coalescence to droplet sizes larger than Stokes diameter.

Dipole forces are established due to the alignment of polar water molecules in the droplet and are given by the equation:

$$F_{dipole} = \frac{6KE^2r^6}{s^4}$$
 Equation 38

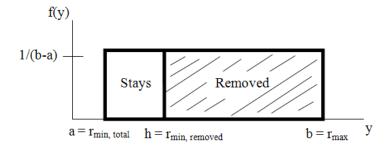
Electrophoretic forces are attractive and repulsive forces between charged droplets and electrodes and are given by the equation:

$$F_e = C\pi^3 \mu \varepsilon_C r^2 E^2 e^{\left(\frac{-\sigma_C t}{\varepsilon_C}\right)}$$
 Equation 39

Finally, di-electrophoretic forces are attractive forces established in a non-uniform field (all particles exhibit di-electrophoretic activity in the presence of electric fields).

$$F_{diel} = 2\pi r^3 \varepsilon_C \left(\frac{\varepsilon_D^* - \varepsilon_C^*}{\varepsilon_D^* + 2\varepsilon_C^*} \right) \nabla E^2$$
 Equation 40

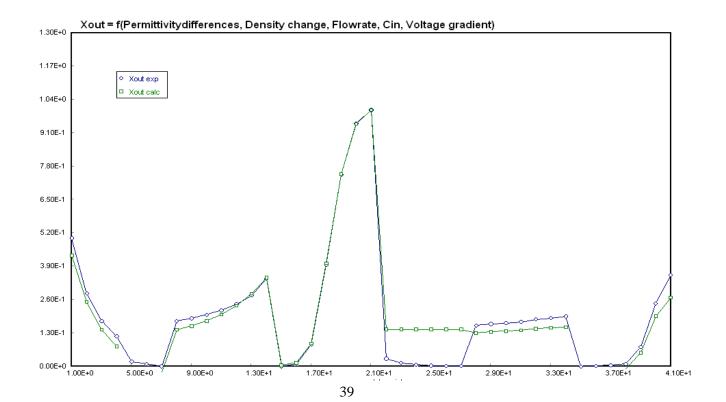
In order to find the minimum particle size, a force balance was performed for the x and y components of the force acting on a suspended particle in the desalter. Because each particle would be falling at a constant velocity, the sum of the forces were set equal to 0 as acceleration would be 0.


$$\sum F_{x} = F_{dipole} + F_{e} + F_{diel} = \frac{6KE^{2}r^{6}}{s^{4}} + C\pi^{3}\mu\varepsilon_{C}r^{2}E^{2}e^{\left(\frac{-\sigma_{C}t}{\varepsilon_{C}}\right)} + 2\pi r^{3}\varepsilon_{C}\left(\frac{\varepsilon_{D}^{*} - \varepsilon_{C}^{*}}{\varepsilon_{D}^{*} + 2\varepsilon_{C}^{*}}\right)\nabla E^{2} = 0$$

Equation 41

where the minimum particle size removed in the desalter is represented in the rearrangement of Stokes Law as seen in Equation 13:

$$\hat{r} = \sqrt{\frac{9\mu(H-h)F}{2(\rho_W - \rho_O)gV}}$$
 Equation 42


The water particles entering the desalter were assumed to be uniformly distributed throughout the crude oil. Thus, the particles follow a uniform probability distribution:

Thus, the mass fraction of contaminants removed from the wastewater is:

$$y = \frac{\int_{\frac{9\mu(H-h)F}{2(\rho_W - \rho_O)gV}}^{\infty} \left[\left(\frac{4}{3} \pi r^3 \right) \cdot \frac{1}{H} \right] dr}{\int_{0}^{\infty} \left[\left(\frac{4}{3} \pi r^3 \right) \cdot \frac{1}{H} \right] dr}$$
Equation 43

System properties such as voltage, electric field gradient, C_{in} , density change, flowrate, etc. were varied and the mass fraction of contaminants remaining in the desalter was measured. The results from a non-linear regression are shown below:

From points 1-7, permittivity differences in the group of $\varepsilon_c \left(\frac{\varepsilon_D^* - \varepsilon_C^*}{\varepsilon_D^* + 2\varepsilon_C^*} \right)$ (Farad/meter) were varied. From points 8-14, the $\frac{\Delta \rho}{F}$ (g·hr/cm³·ton) was varied. From points 15-21, inlet concentration of organics (C_{in}) (mg/L) was varied. From points 22-27, voltage (V) was varied. From points 28-34, the exponential of conductivity divided by continuous phase permittivity_e $\left(\frac{-\sigma_{cl}}{\varepsilon_c} \right)$ was varied. From points 35-41, the voltage field gradient, ΔE , in Volts, was varied. The final resulting equation is shown below:

$$\begin{split} X_{out} &= 0.035e^{\left(5.40x10^{-6}\right)\varepsilon_{\mathcal{C}}\left(\frac{\varepsilon_{D}^{*}-\varepsilon_{\mathcal{C}}^{*}}{\varepsilon_{D}^{*}+2\varepsilon_{\mathcal{C}}^{*}}\right)} + \left(5.77x10^{-5}\right)e^{4.77\cdot\frac{\Delta\rho}{F}} + \left(1.85x10^{-23}\right)C_{in}^{1.03x10^{-4}} + 2.99V^{0.0013} + \left(3.69x10^{-4}\right)e^{\left(\frac{-\sigma_{\mathcal{C}}t}{\varepsilon_{\mathcal{C}}}\right)} \\ &\quad + \left(5.04x10^{8}\right)\Delta E^{8.26x10^{-4}} + 0.00023 \end{split}$$

Equation 44

V. Crude oil distillation column

The crude oil distillation column modeling was completed using a Casestudy, built-in distillation column made from the creators of PRO/II as seen in Figure 20 below. The stream circled in red is the wastewater stream. Inlet stream variables and system properties were varied. The different types and amount of organics present in the wastewater stream were various (i.e. ethane, pentane, propane, n-butane, etc.), thus the total amount of organics leaving in the wastewater was found by subtracting sum of all organics from unity.

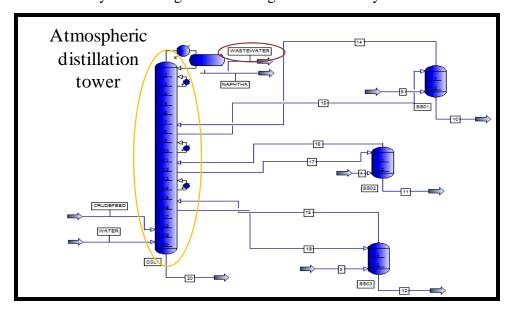
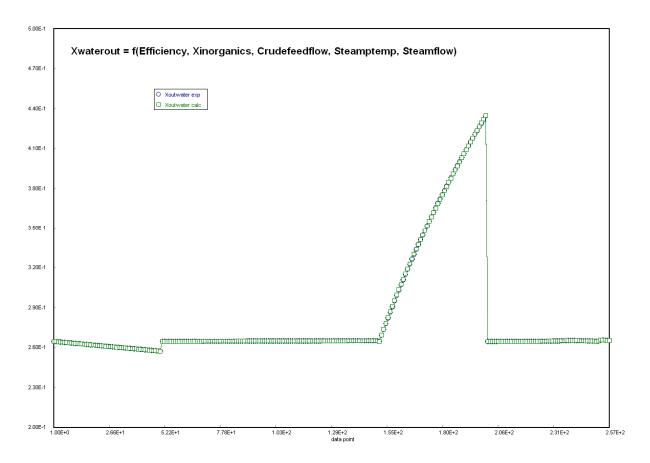



Figure 20. Crude oil distillation column

The non-linear regression is shown below:

From points 1-50, crude feedrate, F_{crude} (ton/hr), was varied. From points 51-150, steam temperature, T (°F), was varied. From points 151-200, steam flowrate, F_{steam} (ton/hr), was varied. From points 201-250, efficiency (η) was varied. From points 251-257, the mass fraction of organics in ($X_{in, \, organics}$) was varied. The resulting equation is shown below:

$$x_{out,old} = 0.113 \cdot \eta^{6} - 0.606 \cdot \eta^{5} + 1.298 \cdot \eta^{4} - 1.419 \cdot \eta^{3} + 0.834 \cdot \eta^{2} - 0.250 \cdot \eta - (3x10^{-5})F_{crude} + (2.202x10^{-7})T + (1.88x10^{-4})F_{steam}^{0.557} + 0.014 \cdot x_{in}^{4} - 0.135 \cdot x_{in}^{3} + 0.472 \cdot x_{in}^{2} - 0.719 \cdot x_{in} + 0.686$$
Equation 45

Comparison of concentration models with simulation results

As is obvious from descriptions of how the equations were developed, the models are linear in the sense that they were made by varying only one parameter at a time (for instance, pressure was varied for 10 points, temperature for 10 points, flowrate for 10 points, etc.) Effects between parameters were not considered (like how temperature would realistically change with pressure) and this was hypothesized to introduce differences between real, simulated results and those predicted from the theoretical, developed equations. To check for differences, inlet stream parameters and system properties were randomly varied and 15 points were generated using the simulation program and these results were compared to those predicted from the theoretical equations. A correction equation was then applied to any model with a percent error of greater than 5%, as this would be a difference of ~1-2 ppm (an acceptable difference).

%
$$error = \frac{|Actual\ result - theoretical\ result|}{Theoretical\ result} \times 100\%$$
 Equation 46

An example of a table generated is shown in Tables 6-7 below for the activated sludge system. The % error was found to be at most ~3%.

			Fron	n Simulation (Steady)				
	Cin,TBOD ₅ (mg/L)	Cin,TKN (mg/L)	Cin, NH3-N (mg/L)	Y (mg VSS/mg SBOD ₅)	k _D (d ⁻¹)	MCRT (d)	MLVSS/MLSS	Cout, TKN (ppm)
Run 1	220	40	25	0.65	0.05	8	0.75	27.3
Run 2	220	85	50	0.65	0.05	8	0.75	55.4
Run 3	400	70	40	0.65	0.05	8	0.75	43
Run 4	200	70	40	0.4	0.1	5	0.75	49
Run 5	300	65	30	0.6	0.2	7	0.6	36.8
Run 6	110	30	12	0.3	0.09	3	0.55	20.8
Run 7	275	50	45	0.8	0.3	4	0.55	45.6
Run 8	275	50	25	0.65	0.15	8	0.4	29.2
Run 9	220	45	35	0.7	0.15	8	0.7	37.1
Run 10	200	70	50	0.65	0.3	10	0.3	54
Run 11	350	85	30	0.5	0.05	5	0.75	39.1
Run 12	325	85	25	0.8	0.25	8	0.8	36.5
Run 13	220	100	25	0.55	0.08	6	0.5	37.8
Run 14	300	35	30	0.65	0.05	7	0.5	30.4
Run 15	285	55	20	0.6	0.07	5	0.75	25.9

Table 6. Simulated results from *Steady* by randomly varying variables that affect outlet concentration

				From Equation				
	Cin,TBOD ₅ (mg/L)	Cin,TKN (mg/L)	Cin, NH3-N (mg/L)	Y (mg VSS/mg SBOD5)	$k_D (d^{-1})$	MCRT (d)	MLVSS/MLSS	Cout, TKN (ppm)
Run 1	220	40	25	0.65	0.05	8	0.75	27.78433656
Run 2	220	85	50	0.65	0.05	8	0.75	55.98433656
Run 3	400	70	40	0.65	0.05	8	0.75	44.32997909
Run 4	200	70	40	0.4	0.1	5	0.75	48.6319467
Run 5	300	65	30	0.6	0.2	7	0.6	37.53360999
Run 6	110	30	12	0.3	0.09	3	0.55	20.41721864
Run 7	275	50	45	0.8	0.3	4	0.55	47.10733691
Run 8	275	50	25	0.65	0.15	8	0.4	29.41451499
Run 9	220	45	35	0.7	0.15	8	0.7	37.74815131
Run 10	200	70	50	0.65	0.3	10	0.3	55.93760778
Run 11	350	85	30	0.5	0.05	5	0.75	39.83904217
Run 12	325	85	25	0.8	0.25	8	0.8	36.00782756
Run 13	220	100	25	0.55	0.08	6	0.5	37.91973565
Run 14	300	35	30	0.65	0.05	7	0.5	29.96312713
Run 15	285	55	20	0.6	0.07	5	0.75	26.11839694

Table 7. Predicted results from *Steady* by randomly varying variables that affect outlet concentration

The corresponding % error between each simulated and theoretical result is shown in Table 8. The greatest % error is highlighted in yellow.

Cout, TKN (ppm) SIMULATION	Cout, TKN (ppm) THEORETICAL	% Error
27.3	27.78433656	1.774126584
55.4	55.98433656	1.054759129
43	44.32997909	3.092974631
49	48.6319467	0.75112918
36.8	37.53360999	1.99350542
20.8	20.41721864	1.840294983
45.6	47.10733691	3.30556339
29.2	29.41451499	0.734640393
37.1	37.74815131	1.747038569
54	55.93760778	3.58816255
39.1	39.83904217	1.890133416
36.5	36.00782756	1.348417653
37.8	37.91973565	0.316760976
30.4	29.96312713	1.437081801
25.9	26.11839694	0.843231418

Table 8. % error between simulation and theoretical results

The maximum % error was 3.59 %. As this is under 5%, the equation was regarded as acceptable in predicting outlet concentrations. This same procedure was followed for the other equations developed through a simulation program (Mathcad, PRO/II). The results are shown below:

Water-using unit	<u>Error</u>
H ₂ S Stripper	± 38%
NH ₃ Stripper	± 31%
Crude oil distillation	± 5%
Biological Treatment	± 3%

Table 9. % Error for water-using units between simulated and theoretical equations

The crude oil distillation and biological treatment produced acceptable ranges for error, while the H₂S stripper and the NH₃ stripper produced errors on the magnitude of ~30-40%. Thus, a correction equation was developed to account for these differences and to try to equate the

equation result with the simulated result. As the H_2S stripper always produced concentrations less than the maximum outlet concentration of the Chevron Wastewater Treatment plant (5 ppm), no correction equation was made. The ammonia stripper results are shown in Figure 21. The correction equation is found to be y = 0.9392x + 4.1579, where "x" is the result predicted from the equation and "y" is the result found from the simulation program. The coefficient of determination was found to be $R^2 = 0.6289$. It's clear that an applied linear regression did not provide the best fit between simulated and predicted results. If any differences exist between actual data from a refinery and predicted results, neglecting effects between stream variables whilst developing models for the regeneration processes could be the source of error.

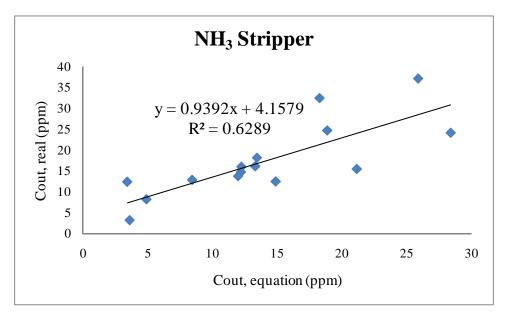


Figure 21. Correction equation for NH₃ Stripper

Equipment Cost models

I. API separator

The majority of the costs that go into purchasing an API separator are the costs of the material being used. Therefore, equipment cost will be a function primarily of the separator volume. All that needs to be done are simple multiplications involving properties of the material chosen to build the reactor. Stainless steel will be chosen as the API separator material because it is durable and resistant to corrosion^{xxiv}. The final equation is based off of density, volume, and price of steel. A full derivation is shown in Appendix II.

$$Cost = 6539.05 \cdot V(m^3)$$
 Equation 47

II. Chevron Wastewater Treatment

Equipment costs for a Chevron Wastewater Treatment (CWWT) plant are dependent on the number of trays, feedrate, vertical height of the columns, reboil ratio, materials cost, and density difference between the passing streams. Since the CWWT plant consists of two stripping columns, the equipment cost for one will be dependent on the same parameters as the other. Basically, the diameter of the column was first solved for in terms of feedrate and the Souders and Brown factor, which is a function of the density difference between passing streams. Standard tray spacing for large-diameter columns are generally either 0.46 or 0.61 m^{xxv}. 0.61 meter tray spacing was chosen in this study. The final result of equipment cost for a CWWT is shown in Equation 27. A full derivation of the CWWT plant equipment costs is shown in Appendix II.

$$Equipment\ Cost = 7423H + \left(674.4N\right) \cdot e^{\frac{1.12\sqrt{F}}{-0.071\Delta\rho^{\frac{1}{2}}\ln\left(RBR\cdot\Delta\rho^{\frac{1}{2}}\right) + 0.195\Delta\rho^{\frac{1}{2}}}} + 42193$$

Equation 48

III. Biological Treatment (Activated Sludge)

As mentioned before, an activated sludge system is the most common biological treatment type. The system consists of an aeration tank where air is bubbled through the tank wastewater followed by a settling tank where cellular material is removed by gravitational

settling. The aeration tank was modeled as an ideal CSTR. The turbulent conditions created by the high flow rate air stream establish a perfect mixing environment. Equipment cost for the secondary clarifier (settling tank) was found to be dependent on reactor size (m³), inlet flow rate (ton/hr), and inlet concentration (ppm). A full derivation is shown in Appendix II.

Equipment Cost(\$) =
$$183 \cdot V(m^3) = \frac{646.48 \cdot F \cdot (100 - Cin, org)}{[0.1 \cdot (Cin, org - 100) + 0.001]} + 866,019 \cdot F$$

Equation 49

where
$$V \ge \frac{70.65 \cdot F \cdot (100 - Cin, org)}{(Cin, org - 100) + 0.01} + 9464 \cdot F$$
 Equation 50

IV. Reverse Osmosis

The cost of the reverse osmosis was computed based on the most significant equipment costs associated with the plant in the industry. These are the cost of the membrane replacement, which has to be done frequently to avoid fouling and reduce efficiency and the pump cost. The equation governing this cost was found to be:

Equipment
$$Cost\left(\frac{\$}{yr}\right) = 180 \cdot A \cdot N + 8053.25 \cdot \left(\frac{\Delta P \cdot F}{\eta}\right)$$
 Equation 51

where A: area per membrane

N: number of membrane used

F: flow rate to the process

V. Activated Carbon Adsorption

As a result of the adsorption being a fixed bed, the basic cost of the process was the cost of regeneration of the bed after saturation. This cost of the fixed bed adsorber depends on the capacity of the bed based on the feed concentration of the wastewater and given the equation:

$$Equipment \cos t(\$) = \$7200C_FQ$$
 Equation 52

Mathematical Programming Results

General Algebraic Modeling System (GAMS)

The GAMS mathematical modeling program was used to optimize the placement and size of the water streams in an oil refinery setting. Using the mixed integer program (MIP) and the relaxed mixed integer program (rMIP) to solve the linear portions of the model as well as the mixed integer non-linear program (MINLP) to solve the non-linear portions, we were able to employ the CPLEX and DICOPT solvers to optimize the water regeneration system.

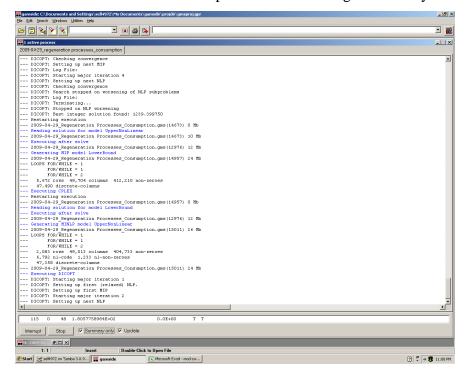


Figure 22. GAMS Program Screenshot

We optimized the system of equations based on two different objective functions, cost and consumption:

- Cost = Annual Operation Cost + Annual Fixed Cost
- Consumption = Freshwater to water-using units + Freshwater to regeneration units

With these two objective functions, we set the output to give the lowest total annualized cost or the lowest annual amount of freshwater consumed.

Past models of water regeneration processes made assumptions for the outlet concentrations coming out of the water-using units and the regeneration processes. Assumptions such as a fixed outlet concentration or a fixed unit efficiency caused previous models to provide

less than ideal results. With the modeled outlet concentrations mentioned in the first part of this report, we are able to find more realistic results spanning a wider range of operating conditions. With these more realistic results, a more confident conclusion can be reached on the economic and environmental impact of utilizing the regeneration process model.

Results

The GAMS model that was created provided over 400,000 non-zero terms with over 1,200 non-linear, non-zero terms. The model took anywhere from one to five hours to run for each simulation and read and processed over 17,000 lines of code. The output of the model provided stream by stream data linking the freshwater source, water-using units, regeneration processes, and water disposal sites all together. An example of the output data is shown in the appendix. The program was run with only the regeneration processes containing outlet concentration models. The water-using units will be added to the program at a later date. With the model standing as it is now though, the process flow diagram of the refinery's water using units changed from a traditional flow like this:

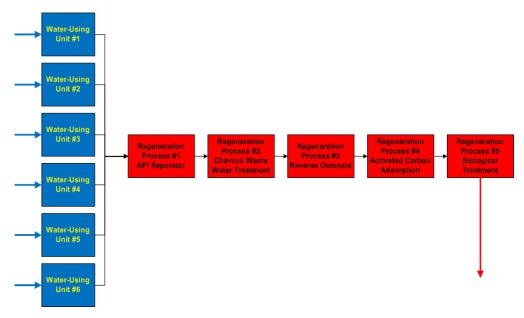


Figure 23. Traditional Water Regeneration

to a new output where streams can flow back and forth from regeneration processes to waterusing units and back in the most efficient manner. An example of this new output is shown below:

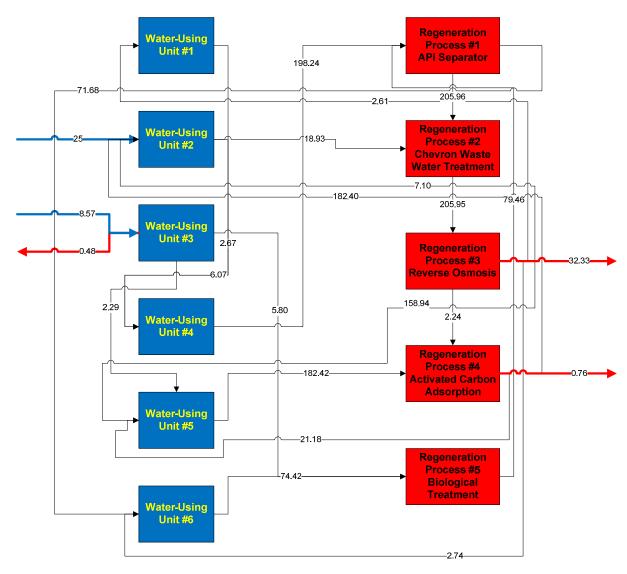


Figure 24. Optimized Water Regeneration

with this schematic, the following contaminant concentrations were cleaned using the regeneration processes:

Contaminan	t Stream Conc	entration R	deduction (ppm)
Salts	Organics	H_2S	Ammonia
621.18	7153.77	27.23	18.61

By including the modeled outlet concentrations of the regeneration processes into our mathematical model, we provided more realistic results to conclude an expected cost of \$950,000 (instead of \$1,220,000 as seen with the fixed outlet concentration model) and a water consumption of 31 tons/hour (instead of 33 tons/hour). We obtained these results by setting

constraints of 250 tons/hour as the maximum stream flow rate and a contaminant outlet limit of 20, 50, 5, and 30 ppm for salts, organics, H₂S, and ammonia respectively. These model results might differ minimally between fixed outlet concentrations and modeled outlet concentrations, but the improved reliability and confidence provides a more usable program for any user who might find it useful. Further tables indicating water stream placement (i.e. flow rate to and from water-using and regeneration processes in ton/hr) are seen in Appendix III.

Conclusions

This study focused on deriving original correlations for predicting wastewater contaminant levels from water treatment and a few water-using units in petroleum refineries. While there is no exact model that exists to find contaminant levels, non-linear regression can be used to approximate a highly accurate answer (with determination coefficients in the range of ~0.99). However, since developed models were found by varying one parameter at a time, nonlinear models (i.e. accounting for how pressure might be related to temperature simultaneously) of the outlet concentration of contaminants provide a more accurate model to represent refinery waste water generation. Of course, all of the procedures aforementioned are performed based on the assumption that the simulation method used is highly accurate. For the sake of this study, which uses programs like PRO/II and Mathcad to generate points for a guessed model, it will be assumed that errors are at a minimum within the system. Other simulation programs like Aspen's HYSYS could be used to check the accuracy of PRO/II runs, if made available to the student. Also, comparing actual data from a petroleum refinery with theoretical model results would ensure that the guessed models in this study are at least close to predicted values, if not entirely incorrect. Once again though, availability is the dilemma at hand, as the information needed to compare could be closely guarded and perhaps laden with legal consequences. As government regulations are becoming increasingly strict in laws regarding treated wastewater, it is, in effect, becoming important to develop more accurate models. Accurate predictions of treated water streams and obeying the government standards set for these contaminant levels not only guarantees a trouble-free work environment, but also promotes a safe and healthy living environment. A final conclusion is that equipment costs of the water regeneration processes are a function of inlet concentrations and flow rates, as well as design parameters.

Recommendations

The crux of wastewater management lies in the optimization of wastewater and freshwater streams. Thus, as optimization models increase in accuracy, the accuracy of corresponding stream placement and flowrates increase. Recommendations for future work in the continuing water management problem include:

- Modeling of the vacuum distillation column, hydrotreatment unit, and Merox I sweetening unit
- More accurate modeling of operating costs for the regeneration processes
- Implement all newly-found models in GAMS file (mathematical model)
- Expand the scope of the project to include other industrial cases where water is used to treat contaminants, e.g. a tricresyl phosphate process or a paper mill process
- Derive an economic plan for refinery wastewater system (including costs of piping, costs of process units, location and prices of pumps, salaries, etc.)
- Investigate water treatment and water-using units for countries other than the U.S., like Canada or Mexico
 - o Find out if the water treatment and water-using units are similar to those used in the U.S.
 - What are the permitted drinking water contaminant levels in that country? Are they similar to the U.S.? If so, are large oil companies abiding by these laws?
 - O Are industries really following government guidelines? Is the government even setting a guideline? If not, could this be the reason why so many oil companies are willing to export their business to countries outside of the U.S. so they don't have to adhere to strict water laws? What kind of money could be saved if water treatment processes were used at a bare minimum?

References

- Chemical and Physical Information. Hydrogen Sulfide. Date accessed: 7 April 2009. http://www.atsdr.cdc.gov/toxprofiles/tp114-c4.pdf>. **2006**.
- Date accessed: 10 April 2009. *Water Quality, Ammonia*. http://www.eerc.und.nodak.edu/Watman/FMRiver/PPTV/ammonia.asp.
- Gammelgard, P. N. Water Pollution Control in Petroleum Refineries in the United States.

 American Petroleum Institute.
- Liptak, Bela G., and Liu, David H. F. *Environmental Engineers' Handbook*. 2nd Ed. CRC Press. **1999**.
- Newson, Malcolm David. Land, Water and Development. Routledge. 1997.
- Sams, Gary W., and Warren, Kenneth, W. *New Methods of Application of Electrostatic Fields*. ©NATCO Group. **2003**.
- Saudi Arabian Water Environment Association (SAWEA). Wastewater Treatment, Treatment Options & Key Design Issues. Siemens Business.
- Seader, J.D., and Henley, Ernest J. *Separation Process Principles*. 2nd Ed. John Wiley & Sons, Inc. **2006**.
- Spirkin, V. G., Gil'mutdinov, Sh. K., and Akhmetshin, E. A. *Evaluation of Oil Lubricity in the Presence of Hydrogen Sulfide*. Ufa Petroleum Institute. **1993**.

Appendix I

API Separator table:

API Separator tabl											
			Mole fraction retain	ned							
I	L (m)		20	24	28	32	36	40	44	48	52
	W (m) H (m)		3.5 1.5	3.5 1.5	3.5	3.5 1.5	3.5 1.5	3.5 1.5	3.5 1.5	3.5 1.5	3.5 1.5
I	V (m³)		105	1.5	1.5 147	168	1.5	210	231	252	273
Height at which particle enters	Flow (m ³ /s)	Flow (ton/hr)									
0.01	0.0010	3.961270121 20.20247762	0.962	0.965	0.968	0.970	0.971	0.973	0.974	0.975	0.976
0.01 0.01	0.0051 0.0101	40.00882822	0.911 0.874	0.919 0.885	0.925 0.894	0.930 0.901	0.934 0.907	0.938 0.912	0.941 0.916	0.943 0.920	0.946 0.923
0.01	0.0151	59.81517883	0.845	0.859	0.870	0.878	0.885	0.891	0.897	0.901	0.905
0.01 0.01	0.0201 0.0251	79.62152944 99.42788004	0.821 0.801	0.837 0.818	0.849 0.831	0.859 0.842	0.867 0.851	0.874 0.859	0.880 0.866	0.886 0.872	0.890 0.877
0.01	0.0301	119.2342307	0.782	0.801	0.815	0.827	0.837	0.846	0.853	0.859	0.865
0.01	0.0351	139.0405813	0.765	0.785	0.801	0.813	0.824	0.833	0.841	0.848	0.854
0.01 0.01	0.0401 0.0451	158.8469319 178.6532825	0.750 0.736	0.771 0.758	0.787 0.775	0.801 0.789	0.812 0.801	0.822 0.811	0.830 0.820	0.837 0.827	0.844 0.834
0.01	0.0501	198.4596331	0.723	0.745	0.763	0.778	0.790	0.801	0.810	0.818	0.825
0.01 0.3	0.0551 0.0010	218.2659837 3.961270121	0.711 0.966	0.734 0.969	0.752 0.971	0.767	0.780	0.791	0.801	0.809	0.817
0.3	0.0010	20.20247762	0.921	0.928	0.933	0.938	0.941	0.944	0.947	0.949	0.951
0.3	0.0101	40.00882822	0.887	0.897	0.905	0.911	0.917	0.921	0.925	0.928	0.931
0.3 0.3	0.0151 0.0201	59.81517883 79.62152944	0.861 0.840	0.874 0.854	0.883 0.865	0.891 0.874	0.897 0.881	0.903 0.888	0.908	0.912 0.898	0.915 0.902
0.3	0.0251	99.42788004	0.821	0.837	0.849	0.859	0.867	0.874	0.880	0.885	0.890
0.3 0.3	0.0301 0.0351	119.2342307 139.0405813	0.804 0.789	0.821 0.807	0.834 0.821	0.845 0.833	0.854 0.842	0.862 0.850	0.868 0.857	0.874 0.864	0.879 0.869
0.3	0.0401	158.8469319	0.774	0.794	0.809	0.821	0.831	0.840	0.848	0.854	0.860
0.3	0.0451	178.6532825	0.761	0.781	0.797	0.810	0.821	0.830	0.838	0.845	0.851
0.3 0.3	0.0501 0.0551	198.4596331 218.2659837	0.749 0.738	0.770 0.759	0.787 0.776	0.800 0.791	0.811 0.802	0.821 0.812	0.829 0.821	0.837 0.829	0.843 0.835
0.5	0.0010	3.961270121	0.969	0.971	0.974	0.975	0.977	0.978	0.979	0.980	0.981
0.5	0.0051	20.20247762 40.00882822	0.928	0.934	0.939	0.943	0.947	0.949	0.952	0.954	0.956 0.937
0.5 0.5	0.0101 0.0151	59.81517883	0.897 0.874	0.906 0.885	0.914 0.894	0.919 0.901	0.924 0.907	0.928 0.912	0.932 0.916	0.935 0.920	0.937
0.5	0.0201	79.62152944	0.854	0.867	0.877	0.885	0.892	0.898	0.902	0.907	0.911
0.5 0.5	0.0251 0.0301	99.42788004 119.2342307	0.837 0.821	0.851 0.837	0.862 0.849	0.871 0.859	0.879 0.867	0.885 0.874	0.891 0.880	0.895 0.885	0.900
0.5	0.0351	139.0405813	0.807	0.823	0.837	0.847	0.856	0.864	0.870	0.876	0.881
0.5	0.0401	158.8469319	0.794	0.811	0.825	0.837	0.846	0.854	0.861	0.867	0.872
0.5 0.5	0.0451 0.0501	178.6532825 198.4596331	0.781 0.770	0.800 0.789	0.815 0.805	0.827 0.817	0.837 0.828	0.845 0.837	0.852 0.844	0.859 0.851	0.864 0.857
0.5	0.0551	218.2659837	0.759	0.780	0.795	0.808	0.819	0.829	0.837	0.844	0.850
0.75 0.75	0.0010 0.0051	3.961270121 20.20247762	0.973 0.938	0.975 0.943	0.977 0.948	0.979 0.951	0.980 0.954	0.981 0.956	0.982 0.958	0.983 0.960	0.983 0.962
0.75	0.0101	40.00882822	0.911	0.919	0.926	0.930	0.935	0.938	0.941	0.944	0.946
0.75	0.0151	59.81517883	0.891	0.901	0.908	0.914	0.920	0.924	0.927	0.931	0.933
0.75 0.75	0.0201 0.0251	79.62152944 99.42788004	0.874 0.859	0.885 0.871	0.894 0.881	0.901 0.889	0.907 0.895	0.912 0.901	0.916 0.906	0.920 0.910	0.923 0.913
0.75	0.0301	119.2342307	0.845	0.859	0.869	0.878	0.885	0.891	0.896	0.901	0.905
0.75 0.75	0.0351 0.0401	139.0405813 158.8469319	0.833 0.821	0.847 0.837	0.859 0.849	0.868 0.859	0.876 0.867	0.882 0.874	0.888	0.893 0.885	0.897 0.890
0.75	0.0451	178.6532825	0.810	0.827	0.840	0.850	0.859	0.866	0.873	0.878	0.883
0.75 0.75	0.0501	198.4596331	0.800	0.817	0.831	0.842	0.851	0.859	0.866	0.871	0.877
1	0.0551 0.0010	218.2659837 3.961270121	0.791 0.978	0.808	0.823	0.834	0.844	0.852	0.859	0.865 0.986	0.870
1	0.0051	20.20247762	0.949	0.954	0.957	0.960	0.963	0.964	0.966	0.968	0.969
1 1	0.0101 0.0151	40.00882822 59.81517883	0.928 0.912	0.935 0.920	0.940 0.926	0.944 0.931	0.947 0.935	0.950 0.938	0.952 0.941	0.954 0.944	0.956 0.946
1	0.0201	79.62152944	0.898	0.907	0.914	0.920	0.924	0.928	0.932	0.935	0.937
1	0.0251	99.42788004	0.885	0.895	0.903	0.910	0.915	0.920	0.923	0.927	0.930
1	0.0301 0.0351	119.2342307 139.0405813	0.874 0.864	0.885 0.876	0.894 0.885	0.901 0.893	0.907 0.899	0.912 0.904	0.916 0.909	0.920 0.913	0.923 0.917
1	0.0401	158.8469319	0.854	0.867	0.877	0.885	0.892	0.898	0.903	0.907	0.911
1	0.0451 0.0501	178.6532825 198.4596331	0.845 0.837	0.859 0.851	0.870 0.862	0.878 0.871	0.885 0.879	0.891 0.885	0.897 0.891	0.901 0.896	0.905
1	0.0551	218.2659837	0.829	0.844	0.855	0.865	0.873	0.880	0.885	0.890	0.895
1.25	0.0010	3.961270121	0.984	0.986	0.987	0.988	0.988	0.989	0.990	0.990 0.977	0.990 0.978
1.25 1.25	0.0051 0.0101	20.20247762 40.00882822	0.964 0.950	0.968 0.954	0.970 0.958	0.972 0.960	0.974 0.963	0.975 0.965	0.976 0.966	0.977	0.978
1.25	0.0151	59.81517883	0.938	0.944	0.948	0.951	0.954	0.957	0.959	0.960	0.962
1.25 1.25	0.0201 0.0251	79.62152944 99.42788004	0.928 0.920	0.935 0.927	0.940 0.932	0.944 0.937	0.947 0.941	0.950 0.944	0.952 0.946	0.954 0.949	0.956 0.951
1.25	0.0301	119.2342307	0.912	0.920	0.926	0.931	0.935	0.938	0.941	0.944	0.946
1.25	0.0351	139.0405813 158.8469319	0.904	0.913	0.920	0.925	0.929	0.933	0.936	0.939	0.942 0.937
1.25 1.25	0.0401 0.0451	158.8469319 178.6532825	0.898 0.891	0.907 0.901	0.914 0.909	0.920 0.915	0.924 0.920	0.928 0.924	0.932 0.928	0.935 0.931	0.937
1.25	0.0501	198.4596331	0.885	0.896	0.904	0.910	0.915	0.920	0.924	0.927	0.930
1.25 1.49	0.0551 0.0010	218.2659837 3.961270121	0.880 0.997	0.890 0.997	0.899 0.997	0.905	0.911	0.916	0.920	0.923 0.998	0.926
1.49	0.0010	3.961270121 20.20247762	0.997	0.997	0.997	0.998	0.998	0.998	0.998	0.998	0.998
1.49	0.0101	40.00882822	0.990	0.991	0.992	0.992	0.993	0.993	0.993	0.994	0.994
1.49 1.49	0.0151 0.0201	59.81517883 79.62152944	0.988 0.986	0.989 0.987	0.990 0.988	0.990 0.989	0.991 0.990	0.991 0.990	0.992 0.991	0.992 0.991	0.993 0.991
1.49	0.0251	79.62152944 99.42788004	0.986	0.987	0.988	0.989	0.990	0.990	0.991	0.991	0.991
1.49	0.0301	119.2342307	0.983	0.984	0.986	0.987	0.987	0.988	0.989	0.989	0.989
1.49 1.49	0.0351	139.0405813	0.982	0.983	0.984 0.983	0.985	0.986	0.987	0.988	0.988 0.987	0.989
1.49 1.49	0.0401 0.0451	158.8469319 178.6532825	0.980 0.979	0.982 0.981	0.983	0.984 0.983	0.985 0.984	0.986 0.985	0.987 0.986	0.987	0.988
1.49	0.0501 0.0551	198.4596331	0.978	0.980	0.981	0.983	0.984	0.984	0.985	0.986 0.985	0.986
1.49		218.2659837	0.977	0.979	0.980	0.982	0.983	0.984	0.984		0.986

Polymath results for activated sludge:

POLYMATH Results

No Title 03-02-2009

Nonlinear regression (L-M)

Model: TKNeffluent =

Variable	Ini guess	Value	95% confidence
a	35	20.033392	0.2483401
b	-0.04	-0.1381159	0.0022601
С	0.16	0.0055365	0.0021003
е	0.843	0.4414261	0.0049
g	26	15.213166	0.1693005
i	-0.11	0.8397723	0.0251757
j	13.4	-69.166537	1.3530784
m	0.083	-0.4107851	0.0080561
0	25	7.3439867	0.2195136
р	0.123	-13.176989	0.1637615
d	1300	1290.1729	0.1163555

Nonlinear regression settings

Max # iterations = 300

Precision

R^2 = -3.233E+04 R^2adj = -3.921E+04 Rmsd = 167.96354 Variance = 2.019E+06

General

Sample size = 58 # Model vars = 11 # Indep vars = 7 # Iterations = 22

Polymath report for sludge in activated sludge:

POLYMATH Results

No Title 02-25-2009

Nonlinear regression (L-M)

Model: TKNsludge =

 $a*(TBOD5^b)+c*TKN+e*NH3N+g*(Y^i)+j*kd+m*MCRT+(o*MLVSStoMLSS*MLVSStoMLSS)+(p*MLVSStoMLSS)+(q*mgBODtomgVSS)+d$

Variable	Ini guess	Value	95% confidence
a	2.447E+05	3.436E+05	6.195E+05
b	-0.989	-1.0566498	0.3699678
С	77.9	77.885427	0.2837419
е	-77	-77.035544	1.3641259
g	780	762.48543	74.635933
i	-0.99	-0.998504	0.03776
j	6673	6684.5207	127.00663
m	42	41.789081	0.7679007
0	-1798	-99.853572	307.24985
р	1829	1021.5736	253.5563
q	-83.4	-75.891695	97.216543
d	4598	-3663.6664	255.4147

Nonlinear regression settings

Max # iterations = 300

Precision

R^2 = 0.9998816 R^2adj = 0.9998533 Rmsd = 3.3082243 Variance = 800.36492

General

Sample size = 58 # Model vars = 12 # Indep vars = 8 # Iterations = 27

Polymath report for Amine Sweetening

POLYMATH Results

03-08-2009

Nonlinear regression (L-M)

Model: steam = (a*(Regcondenpress^(-1)))+((b*Feedtemp)+c)

Variable	Ini guess	Value	95% confidence
a	1.705	0.0232341	8.851E-04
b	1.0E-08	-2.967E-05	7.559E-06
С	0.125	0.006946	0.0040712

Nonlinear regression settings

Max # iterations = 64

Precision

R^2 = 0.9887651 R^2adj = 0.9885335 Rmsd = 3.421E-04 Variance = 1.206E-05

General

Sample size = 100 # Model vars = 3 # Indep vars = 2 # Iterations = 5

Polymath results for H₂S Stripper:

POLYMATH Results

No Title 04-20-2009

Nonlinear regression (L-M)

Model: CoutH2S =

 $a*exp(b*CinNH3) + c*exp(d*Temp) + e*(Efficiency^f) + g*(CinH2S^2) + (h*CinH2S) + i*(Number of trays^j) + k*(CinH2S^2) + (h*CinH2S^2) + (h*C$

Variable	Ini guess	Value	95% confidence
a	2.0E-06	0.0023514	6.18E-04
b	0.7648	0.0792118	0.0565716
C	3.0E-06	-1.0002578	0.3104719
d	0.0142	-0.0385425	0.0020614
е	3.0E-05	-0.0143649	7.966E-04
f	-0.908	-0.137697	0.1722801
g	1.0E-06	0.0112059	2.959E-05
h	-2.0E-06	0.0012207	1.618E-04
i	5244	2.17E+04	24.371227
j	-7.377	-7.0772926	0.0010207
k	9.0E-06	0.015824	8.152E-05

Nonlinear regression settings

Max # iterations = 300

Precision

R^2 = 0.9994561 R^2adj = 0.9994201 Rmsd = 0.0013088 Variance = 2.977E-04

General

Sample size = 162 # Model vars = 11 # Indep vars = 5 # Iterations = 71

Polymath results for NH₃ Stripper:

POLYMATH Report

Nonlinear Regression (L-M)

No Title 28-Apr-2009

Model: CoutNH3 =

 $a*(Feedrate^2) + b*Feedrate + c*CinNH3 + d*exp(Number of trays*e) + f*exp(g*Temp) + h*RFR + i*(Pressure^j) + k*(Efficiency^2) + l*Efficiency + m*(CinH2S^n) + o*(Pressure^j) + f*exp(g*Temp) + f*exp(g*Temp)$

Variable	Initial guess	Value	95% confidence
a	0.0006	0.0006762	3.554E-06
b	0.0106	-0.0064736	9.96E-05
С	0.0306	-0.056633	0.0006159
d	9106.6	1.546E+04	0.4341984
е	-0.824	-0.6966562	5.606E-06
f	7.0E-05	8.069E-05	3.885E-09
g	0.0247	0.0250764	8.003E-08
h	0.0069	0.0612676	0.0005577
i	4.481E+04	-4.436E+06	2.257E+04
j	-2.572	-2.940971	0.0009171
k	0.1883	-0.5269187	0.0029861
I	-0.3277	-0.7517399	0.0023763
m	0.041	7.1049645	7.0639645
n	-0.065	0.470095	0.535095
О	0.322	0.237672	0.0018679

Nonlinear regression settings

Max # iterations = 300

Precision

R^2	0.9148893
R^2adj	0.8817907
Rmsd	2.460408
Variance	437.3733

General

Sample size	51
Model vars	15
Indep vars	8
Iterations	18

Source data points and calculated data points

Feedrate China Numberotrays Fem Rek Pressure Emiclency China CouthH3 Calc CouthH3	50	Source data points and calculated data points											
2 10 3 15 250 3 250 0.8 5 0.0752 -0.5870836 0.662283 3 15 3 15 250 3 250 0.8 5 0.0924 -0.5349234 0.627323 4 20 3 15 250 3 250 0.8 5 0.124 -0.448952 0.572952 5 25 3 15 250 3 250 0.8 5 0.187 -0.3291694 0.516169 6 30 3 15 250 3 250 0.8 5 0.277 -0.1755756 0.452575 7 35 3 15 250 3 250 0.8 5 0.406 0.0118294 0.394170 8 40 3 15 250 3 250 0.8 5 0.597 0.2330456 0.366000 10 43 3 15 250 <td< th=""><th></th><th>Feedrate</th><th>CinNH3</th><th>Numberoftrays</th><th>Temp</th><th>RFR</th><th>Pressure</th><th>Efficiency</th><th>CinH2S</th><th>CoutNH3</th><th></th><th>Delta CoutNH3</th></td<>		Feedrate	CinNH3	Numberoftrays	Temp	RFR	Pressure	Efficiency	CinH2S	CoutNH3		Delta CoutNH3	
3 15 3 15 250 3 250 0.8 5 0.0924 -0.5349234 0.627323 4 20 3 15 250 3 250 0.8 5 0.124 -0.448952 0.572952 5 25 3 15 250 3 250 0.8 5 0.187 -0.3291694 0.516169 6 30 3 15 250 3 250 0.8 5 0.406 0.0118294 0.394170 8 40 3 15 250 3 250 0.8 5 0.406 0.0118294 0.394170 9 42 3 15 250 3 250 0.8 5 0.697 0.330456 0.363974 10 43 3 15 250 3 250 0.8 5 0.0591 0.341474 0.387424 12 15 0.3 15 250	1	5	3	15	250	3	250	0.8	5	0.00642	-0.6054326	0.6118526	
4 20 3 15 250 3 250 0.8 5 0.124 -0.448952 0.572952 5 25 3 15 250 3 250 0.8 5 0.187 -0.3291694 0.5161699 6 30 3 15 250 3 250 0.8 5 0.277 -0.1755756 0.452575 7 35 3 15 250 3 250 0.8 5 0.406 0.0118294 0.394170 8 40 3 15 250 3 250 0.8 5 0.697 0.3309992 0.366000 10 43 3 15 250 3 250 0.8 5 0.697 0.330992 0.366000 11 15 0.33 15 250 3 250 0.8 5 0.0597 0.2330456 0.3629414 0.372995 11 5 0.33 250	2	10	3	15	250	3	250	0.8	5	0.0752	-0.5870836	0.6622836	
5 25 3 15 250 3 250 0.8 5 0.187 -0.3291694 0.5161699 6 30 3 15 250 3 250 0.8 5 0.277 -0.1755756 0.452575 7 35 3 15 250 3 250 0.8 5 0.406 0.0118294 0.394170 8 40 3 15 250 3 250 0.8 5 0.597 0.2330456 0.363954 9 42 3 15 250 3 250 0.8 5 0.697 0.3309992 0.366000 10 43 3 15 250 3 250 0.8 5 0.0575 0.3820047 0.372995 11 15 0.33 15 250 3 250 0.8 5 0.00541 -0.3820144 0.3872492 12 15 0.755 15 250	3	15	3	15	250	3	250	0.8	5	0.0924	-0.5349234	0.6273234	
6 30 3 15 250 3 250 0.8 5 0.277 -0.1755756 0.452575 7 35 3 15 250 3 250 0.8 5 0.406 0.0118294 0.394170 8 40 3 15 250 3 250 0.8 5 0.597 0.2330456 0.363954 9 42 3 15 250 3 250 0.8 5 0.697 0.3309992 0.366000 10 43 3 15 250 3 250 0.8 5 0.0551 0.3820047 0.372995 11 15 0.3 15 250 3 250 0.8 5 0.0541 -0.3820144 0.387424 12 15 0.75 15 250 3 250 0.8 5 0.0153 -0.474992 0.422799 13 15 15 250 3	4	20	3	15	250	3	250	0.8	5	0.124	-0.448952	0.572952	
7 35 3 15 250 3 250 0.8 5 0.406 0.0118294 0.394170 8 40 3 15 250 3 250 0.8 5 0.597 0.2330456 0.363954 9 42 3 15 250 3 250 0.8 5 0.697 0.3309992 0.366000 10 43 3 15 250 3 250 0.8 5 0.0551 0.3820447 0.372995 11 15 0.3 15 250 3 250 0.8 5 0.00541 -0.3820144 0.387424 12 15 0.75 15 250 3 250 0.8 5 0.0153 -0.4074992 0.422799 13 15 1 15 250 3 250 0.8 5 0.0219 -0.4216575 0.43257 14 15 1.5 250 3	5	25	3	15	250	3	250	0.8	5	0.187	-0.3291694	0.5161694	
8 40 3 15 250 3 250 0.8 5 0.597 0.2330456 0.363954 9 42 3 15 250 3 250 0.8 5 0.697 0.3309992 0.366000 10 43 3 15 250 3 250 0.8 5 0.755 0.382047 0.372995 11 15 0.3 15 250 3 250 0.8 5 0.00541 -0.3820144 0.387424 12 15 0.75 15 250 3 250 0.8 5 0.0153 -0.4074992 0.422799 13 15 1 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 1.5 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 1.5 15 250 3 250 0.8 5 0.061 -0.4782904 0.524390	6	30	3	15	250	3	250	0.8	5	0.277	-0.1755756	0.4525756	
9 42 3 15 250 3 250 0.8 5 0.697 0.3309992 0.366000 10 43 3 15 250 3 250 0.8 5 0.755 0.3820047 0.372995 11 15 0.3 15 250 3 250 0.8 5 0.00541 -0.3820144 0.387424 12 15 0.75 15 250 3 250 0.8 5 0.0153 -0.4074992 0.422799 13 15 1 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 1.5 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 1.5 250 3 250 0.8 5 0.0334 -0.449974 0.483374 15 1.5 250 3 250 0.8 5 0.061 -0.5066069 0.567606 17 15 4 <td>7</td> <td>35</td> <td>3</td> <td>15</td> <td>250</td> <td>3</td> <td>250</td> <td>0.8</td> <td>5</td> <td>0.406</td> <td>0.0118294</td> <td>0.3941706</td>	7	35	3	15	250	3	250	0.8	5	0.406	0.0118294	0.3941706	
10 43 3 15 250 3 250 0.8 5 0.755 0.3820047 0.372995 11 15 0.3 15 250 3 250 0.8 5 0.00541 -0.3820144 0.387424 12 15 0.75 15 250 3 250 0.8 5 0.0153 -0.4074992 0.422799 13 15 1 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 1.5 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 15 15 250 3 250 0.8 5 0.0461 -0.449974 0.483374 15 25 15 250 3 250 0.8	8	40	3	15	250	3	250	0.8	5	0.597	0.2330456	0.3639544	
11 15 0.3 15 250 3 250 0.8 5 0.00541 -0.3820144 0.387424 12 15 0.75 15 250 3 250 0.8 5 0.0153 -0.4074992 0.422799 13 15 1 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 1.5 15 250 3 250 0.8 5 0.0334 -0.449974 0.483374 15 15 250 3 250 0.8 5 0.0461 -0.479294 0.524390 16 15 2.5 15 250 3 250 0.8 5 0.0661 -0.5066069 0.567606 17 15 4 15 250 3 250 0.8 5 0.108 -0.5915564 0.699556 18 15 5 15 250 3 <	9	42	3	15	250	3	250	0.8	5	0.697	0.3309992	0.3660008	
12 15 0.75 15 250 3 250 0.8 5 0.0153 -0.4074992 0.422799 13 15 1 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 1.5 15 250 3 250 0.8 5 0.0334 -0.449974 0.483374 15 15 2 15 250 3 250 0.8 5 0.0461 -0.4782904 0.524390 16 15 2.5 15 250 3 250 0.8 5 0.061 -0.5066069 0.567606 17 15 4 15 250 3 250 0.8 5 0.108 -0.5915564 0.699556 18 15 5 15 250 3 250 0.8 5 0.143 -0.6481894 0.791189 19 15 6 15 250 3 250 0.8 5 0.143 -0.6481894 0.791189	10	43	3	15	250	3	250	0.8	5	0.755	0.3820047	0.3729953	
13 15 1 15 250 3 250 0.8 5 0.0219 -0.4216575 0.443557 14 15 1.5 15 250 3 250 0.8 5 0.0334 -0.449974 0.483374 15 15 2 15 250 3 250 0.8 5 0.0461 -0.4782904 0.524390 16 15 2.5 15 250 3 250 0.8 5 0.061 -0.5066069 0.567606 17 15 4 15 250 3 250 0.8 5 0.108 -0.5915564 0.699556 18 15 5 15 250 3 250 0.8 5 0.143 -0.6481894 0.791189 19 15 6 15 250 3 250 0.8 5 0.18 -0.7048223 0.884822 20 15 3 5 250	11	15	0.3	15	250	3	250	0.8	5	0.00541	-0.3820144	0.3874244	
14 15 1.5 15 250 3 250 0.8 5 0.0334 -0.449974 0.483374 15 15 2 15 250 3 250 0.8 5 0.0461 -0.4782904 0.524390 16 15 2.5 15 250 3 250 0.8 5 0.061 -0.5066069 0.567606 17 15 4 15 250 3 250 0.8 5 0.108 -0.5915564 0.699556 18 15 5 15 250 3 250 0.8 5 0.143 -0.6481894 0.791189 19 15 6 15 250 3 250 0.8 5 0.18 -0.7048223 0.884822 20 15 3 5 250 3 250 0.8 5 0.18 -0.7048223 0.884822 20 15 3 25 250 3 250 0.8 5 0.0424 13.5967 -13.1727 <td< td=""><td>12</td><td>15</td><td>0.75</td><td>15</td><td>250</td><td>3</td><td>250</td><td>0.8</td><td>5</td><td>0.0153</td><td>-0.4074992</td><td>0.4227992</td></td<>	12	15	0.75	15	250	3	250	0.8	5	0.0153	-0.4074992	0.4227992	
15 15 2 15 250 3 250 0.8 5 0.0461 -0.4782904 0.524390 16 15 2.5 15 250 3 250 0.8 5 0.061 -0.5066069 0.567606 17 15 4 15 250 3 250 0.8 5 0.108 -0.5915564 0.699556 18 15 5 15 250 3 250 0.8 5 0.143 -0.6481894 0.791189 19 15 6 15 250 3 250 0.8 5 0.18 -0.7048223 0.884822 20 15 3 5 250 3 250 0.8 5 0.18 -0.7048223 0.884822 21 15 3 10 250 3 250 0.8 5 0.424 13.5967 -13.1727 22 15 3 25 250	13	15	1	15	250	3	250	0.8	5	0.0219	-0.4216575	0.4435575	
16 15 2.5 15 250 3 250 0.8 5 0.061 -0.5066069 0.567606 17 15 4 15 250 3 250 0.8 5 0.108 -0.5915564 0.699556 18 15 5 15 250 3 250 0.8 5 0.143 -0.6481894 0.791189 19 15 6 15 250 3 250 0.8 5 0.18 -0.7048223 0.884822 20 15 3 5 250 3 250 0.8 5 0.18 -0.7048223 0.884822 21 15 3 10 250 3 250 0.8 5 0.18 -0.7048223 0.884822 21 15 3 10 250 3 250 0.8 5 0.424 13.5967 -13.1727 22 15 3 20 250 3 250 0.8 5 0.00483 -0.968562 0.973686 23<	14	15	1.5	15	250	3	250	0.8	5	0.0334	-0.449974	0.483374	
17 15 4 15 250 3 250 0.8 5 0.108 -0.5915564 0.699556 18 15 5 15 250 3 250 0.8 5 0.143 -0.6481894 0.791189 19 15 6 15 250 3 250 0.8 5 0.18 -0.7048223 0.884822 20 15 3 5 250 3 250 0.8 5 350 473.8129 -123.8129 21 15 3 10 250 3 250 0.8 5 0.424 13.5967 -13.1727 22 15 3 20 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 23 15 3 25 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 24 15 3 30 250 3 250 0.8 5 0.00000024 -0.9821808 0.982183 <t< td=""><td>15</td><td>15</td><td>2</td><td>15</td><td>250</td><td>3</td><td>250</td><td>0.8</td><td>5</td><td>0.0461</td><td>-0.4782904</td><td>0.5243904</td></t<>	15	15	2	15	250	3	250	0.8	5	0.0461	-0.4782904	0.5243904	
18 15 5 15 250 3 250 0.8 5 0.143 -0.6481894 0.791189 19 15 6 15 250 3 250 0.8 5 0.18 -0.7048223 0.884822 20 15 3 5 250 3 250 0.8 5 350 473.8129 -123.8129 21 15 3 10 250 3 250 0.8 5 0.424 13.5967 -13.1727 22 15 3 20 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 23 15 3 25 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 23 15 3 25 250 3 250 0.8 5 0.0000024 -0.9821808 0.982183 24 15 3 30 250 3 250 0.8 5 0.00000022 -0.9825899 0.982590	16	15	2.5	15	250	3	250	0.8	5	0.061	-0.5066069	0.5676069	
19 15 6 15 250 3 250 0.8 5 0.18 -0.7048223 0.884822 20 15 3 5 250 3 250 0.8 5 350 473.8129 -123.8129 21 15 3 10 250 3 250 0.8 5 0.424 13.5967 -13.1727 22 15 3 20 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 23 15 3 25 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 23 15 3 25 250 3 250 0.8 5 0.00000242 -0.9821808 0.982183 24 15 3 30 250 3 250 0.8 5 0.00000022 -0.9825899 0.982590 25 15 3 15 300 3 250 0.8 5 0.0236 -0.5653663 0.588966	17	15	4	15	250	3	250	0.8	5	0.108	-0.5915564	0.6995564	
20 15 3 5 250 3 250 0.8 5 350 473.8129 -123.8129 21 15 3 10 250 3 250 0.8 5 0.424 13.5967 -13.1727 22 15 3 20 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 23 15 3 25 250 3 250 0.8 5 0.00000242 -0.9821808 0.982183 24 15 3 30 250 3 250 0.8 5 0.000000242 -0.9821808 0.982183 24 15 3 30 250 3 250 0.8 5 0.00000022 -0.9825899 0.982590 25 15 3 15 200 3 250 0.8 5 0.0236 -0.5653663 0.588966 26 15 3 15 300 3 250 0.8 5 0.0273 -0.4282608 0.455560 <	18	15	5	15	250	3	250	0.8	5	0.143	-0.6481894	0.7911894	
21 15 3 10 250 3 250 0.8 5 0.424 13.5967 -13.1727 22 15 3 20 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 23 15 3 25 250 3 250 0.8 5 0.00000242 -0.9821808 0.982183 24 15 3 30 250 3 250 0.8 5 0.000000242 -0.9825899 0.982590 25 15 3 15 200 3 250 0.8 5 0.00000022 -0.9825899 0.982590 25 15 3 15 200 3 250 0.8 5 0.0236 -0.5653663 0.588966 26 15 3 15 300 3 250 0.8 5 0.0273 -0.4282608 0.455560 27 15 3 15 400 3 250 0.8 5 1.8 1.254832 0.545168 <	19	15	6	15	250	3	250	0.8	5	0.18	-0.7048223	0.8848223	
22 15 3 20 250 3 250 0.8 5 0.00483 -0.9688562 0.973686 23 15 3 25 250 3 250 0.8 5 0.00000242 -0.9821808 0.982183 24 15 3 30 250 3 250 0.8 5 0.00000022 -0.9825899 0.982590 25 15 3 15 200 3 250 0.8 5 0.0236 -0.5653663 0.588966 26 15 3 15 300 3 250 0.8 5 0.0236 -0.5653663 0.588966 26 15 3 15 300 3 250 0.8 5 0.0273 -0.4282608 0.455560 27 15 3 15 400 3 250 0.8 5 1.8 1.254832 0.545168 28 15 3 15 500 3 250 0.8 5 11.2 21.9163 -10.7163	20	15	3	5	250	3	250	0.8	5	350	473.8129	-123.8129	
23 15 3 25 250 3 250 0.8 5 0.00000242 -0.9821808 0.982183 24 15 3 30 250 3 250 0.8 5 0.00000022 -0.9825899 0.982590 25 15 3 15 200 3 250 0.8 5 0.0236 -0.5653663 0.588966 26 15 3 15 300 3 250 0.8 5 0.0273 -0.4282608 0.455560 27 15 3 15 400 3 250 0.8 5 1.8 1.254832 0.545168 28 15 3 15 500 3 250 0.8 5 11.2 21.9163 -10.7163 29 15 3 15 600 3 250 0.8 5 265 275.5544 -10.55436 30 15 3 15 250 2 250 0.8 5 0.0658 -0.596191 0.661991 <t< td=""><td>21</td><td>15</td><td>3</td><td>10</td><td>250</td><td>3</td><td>250</td><td>0.8</td><td>5</td><td>0.424</td><td>13.5967</td><td>-13.1727</td></t<>	21	15	3	10	250	3	250	0.8	5	0.424	13.5967	-13.1727	
24 15 3 30 250 3 250 0.8 5 0.00000022 -0.9825899 0.982590 25 15 3 15 200 3 250 0.8 5 0.0236 -0.5653663 0.588966 26 15 3 15 300 3 250 0.8 5 0.0273 -0.4282608 0.455560 27 15 3 15 400 3 250 0.8 5 1.8 1.254832 0.545168 28 15 3 15 500 3 250 0.8 5 11.2 21.9163 -10.7163 29 15 3 15 600 3 250 0.8 5 265 275.5544 -10.55436 30 15 3 15 250 2 250 0.8 5 0.0658 -0.596191 0.661991 31 15 3 15 250 4 250 0.8 5 0.0503 -0.4736559 0.523955	22	15	3	20	250	3	250	0.8	5	0.00483	-0.9688562	0.9736862	
25 15 3 15 200 3 250 0.8 5 0.0236 -0.5653663 0.588966 26 15 3 15 300 3 250 0.8 5 0.0273 -0.4282608 0.455560 27 15 3 15 400 3 250 0.8 5 1.8 1.254832 0.545168 28 15 3 15 500 3 250 0.8 5 11.2 21.9163 -10.7163 29 15 3 15 600 3 250 0.8 5 265 275.5544 -10.55436 30 15 3 15 250 2 250 0.8 5 0.0658 -0.596191 0.661991 31 15 3 15 250 4 250 0.8 5 0.0503 -0.4736559 0.523955	23	15	3	25	250	3	250	0.8	5	0.00000242	-0.9821808	0.9821832	
26 15 3 15 300 3 250 0.8 5 0.0273 -0.4282608 0.455560 27 15 3 15 400 3 250 0.8 5 1.8 1.254832 0.545168 28 15 3 15 500 3 250 0.8 5 11.2 21.9163 -10.7163 29 15 3 15 600 3 250 0.8 5 265 275.5544 -10.55436 30 15 3 15 250 2 250 0.8 5 0.0658 -0.596191 0.661991 31 15 3 15 250 4 250 0.8 5 0.0503 -0.4736559 0.523955	24	15	3	30	250	3	250	0.8	5	0.00000022	-0.9825899	0.9825901	
27 15 3 15 400 3 250 0.8 5 1.8 1.254832 0.545168 28 15 3 15 500 3 250 0.8 5 11.2 21.9163 -10.7163 29 15 3 15 600 3 250 0.8 5 265 275.5544 -10.55436 30 15 3 15 250 2 250 0.8 5 0.0658 -0.596191 0.661991 31 15 3 15 250 4 250 0.8 5 0.0503 -0.4736559 0.523955	25	15	3	15	200	3	250	0.8	5	0.0236	-0.5653663	0.5889663	
28 15 3 15 500 3 250 0.8 5 11.2 21.9163 -10.7163 29 15 3 15 600 3 250 0.8 5 265 275.5544 -10.55436 30 15 3 15 250 2 250 0.8 5 0.0658 -0.596191 0.661991 31 15 3 15 250 4 250 0.8 5 0.0503 -0.4736559 0.523955	26	15	3	15	300	3	250	0.8	5	0.0273	-0.4282608	0.4555608	
29 15 3 15 600 3 250 0.8 5 265 275.5544 -10.55436 30 15 3 15 250 2 250 0.8 5 0.0658 -0.596191 0.661991 31 15 3 15 250 4 250 0.8 5 0.0503 -0.4736559 0.523955	27	15	3	15	400	3	250	0.8	5	1.8	1.254832	0.5451683	
30 15 3 15 250 2 250 0.8 5 0.0658 -0.596191 0.661991 31 15 3 15 250 4 250 0.8 5 0.0503 -0.4736559 0.523955			3	15	500	3	250	0.8		11.2	21.9163	-10.7163	
31 15 3 15 250 4 250 0.8 5 0.0503 -0.4736559 0.523955	29	15	3	15	600	3	250	0.8	5	265	275.5544	-10.55436	
	30	15	3	15	250	2	250	0.8		0.0658	-0.596191	0.661991	
32 15 3 15 250 5 250 0.8 5 0.0399 -0.4123883 0.452288	31	15	3	15	250	4	250	0.8	5	0.0503	-0.4736559	0.5239559	
	32	15	3	15	250	5	250	0.8	5	0.0399	-0.4123883	0.4522883	
33 15 3 15 250 7 250 0.8 5 0.0283 -0.2898532 0.318153	33	15	3	15	250	7	250	0.8	5	0.0283	-0.2898532	0.3181532	
34 15 3 15 250 8 250 0.8 5 0.025 -0.2285856 0.253585	34	15	3	15	250	8	250	0.8	5	0.025	-0.2285856	0.2535856	
35 15 3 15 250 3 300 0.8 5 0.0354 -0.3716959 0.407095	35	15	3	15	250	3	300	0.8	5	0.0354	-0.3716959	0.4070959	
36 15 3 15 250 3 400 0.8 5 0.00475 -0.2403553 0.245105	36	15	3	15	250	3	400	0.8	5	0.00475	-0.2403553	0.2451053	
37 15 3 15 250 3 500 0.8 5 0.00332 -0.1928509 0.196170	37	15	3	15	250	3	500	0.8	5	0.00332	-0.1928509	0.1961709	

38	15	3	15	250	3	600	0.8	5	0.00338	-0.1715953	0.1749753
39	15	3	15	250	3	700	0.8	5	0.00251	-0.1606753	0.1631853
40	15	3	15	250	3	750	0.8	5	0.00217	-0.1571789	0.1593489
41	15	3	15	250	3	800	0.8	5	0.00165	-0.154492	0.156142
42	15	3	15	250	3	250	0.4	5	0.0658	0.0186935	0.0471065
43	15	3	15	250	3	250	0.5	5	0.0503	-0.1039031	0.1542031
44	15	3	15	250	3	250	0.6	5	0.0399	-0.2370382	0.2769382
45	15	3	15	250	3	250	0.7	5	0.0283	-0.3807116	0.4090116
46	15	3	15	250	3	250	0.9	5	0.025	-0.6996736	0.7246736
47	15	3	15	250	3	250	0.8	0.5	0.0448	1.791348	-1.746548
48	15	3	15	250	3	250	0.8	1	0.0391	-0.4300377	0.4691377
49	15	3	15	250	3	250	0.8	2	0.0388	-0.5302663	0.5690663
50	15	3	15	250	3	250	0.8	6	0.0357	-0.5349673	0.5706673
51	15	3	15	250	3	250	0.8	10	0.0365	-0.5349987	0.5714987

Polymath results for crude oil distillation column:

POLYMATH Report

Nonlinear Regression (L-M)

No Title 20-Apr-2009

Model: Xoutwater = $a*Efficiency^6-b*Efficiency^5+c*Efficiency^4-d*Efficiency^3+e*Efficiency^2-f*Efficiency-g*Crudefeed+h*Steamtemp+i*Steamflow^j+k+I*(Xinorganics^4)+m*(Xinorganics^3)+n*(Xinorganics^2)+o*Xinorganics$

Variable	Initial guess	Value	95% confidence
a	0.1236	0.1129874	0.1295418
b	0.6655	0.6058456	0.684952
С	1.4344	1.297872	1.466419
d	1.5817	1.418556	1.622575
е	0.9411	0.8338002	0.9757995
f	0.2865	0.2497371	0.3015229
g	3.0E-05	2.992E-05	4.024E-07
h	1.0E-07	2.202E-07	3.411E-08
i	0.0174	0.0055334	0.0001881
j	0.4295	0.5565462	0.003919
k	1.7	0.7096117	0.3139925
I	0.0149	0.0143246	0.0101507
m	-0.1402	-0.1353119	0.0970516
n	0.488	0.4716159	0.3442684
О	-0.7433	-0.7189798	0.5370286

Nonlinear regression settings

Max # iterations = 300

Precision

R^2	0.999988
R^2adj	0.9999873
Rmsd	9.227E-06
Variance	2.324E-08

General

Sample size	257
Model vars	15
Indep vars	5
Iterations	26

Source data points and calculated data points

	Efficiency	Crudefeed	Steamtemp	Steamflow	Xinorganics	Xoutwater	Xoutwater calc	Delta Xoutwater
1	0.4	6548.3	600	555	3	0.26486	0.2648542	5.751E-06
2	0.4	6553.3	600	555	3	0.26471	0.2647047	5.346E-06
3	0.4	6558.3	600	555	3	0.26456	0.2645551	4.942E-06
4	0.4	6563.3	600	555	3	0.26441	0.2644055	4.537E-06
5	0.4	6568.3	600	555	3	0.26425	0.2642559	-5.868E-06
6	0.4	6573.3	600	555	3	0.2641	0.2641063	-6.273E-06
7	0.4	6578.3	600	555	3	0.26395	0.2639567	-6.678E-06
8	0.4	6583.3	600	555	3	0.2638	0.2638071	-7.083E-06
9	0.4	6588.3	600	555	3	0.26365	0.2636575	-7.487E-06
10	0.4	6593.3	600	555	3	0.26349	0.2635079	-1.789E-05
11	0.4	6598.3	600	555	3	0.26334	0.2633583	-1.83E-05
12	0.4	6603.3	600	555	3	0.26319	0.2632087	-1.87E-05
13	0.4	6608.3	600	555	3	0.26304	0.2630591	-1.911E-05
14	0.4	6613.3	600	555	3	0.26289	0.2629095	-1.951E-05
15	0.4	6618.3	600	555	3	0.26274	0.2627599	-1.992E-05
16	0.4	6623.3	600	555	3	0.26259	0.2626103	-2.032E-05
17	0.4	6628.3	600	555	3	0.26244	0.2624607	-2.073E-05
18	0.4	6633.3	600	555	3	0.26229	0.2623111	-2.113E-05
19	0.4	6638.3	600	555	3	0.26214	0.2621615	-2.154E-05
20	0.4	6643.3	600	555	3	0.26199	0.2620119	-2.194E-05
21	0.4	6648.3	600	555	3	0.26184	0.2618623	-2.235E-05
22	0.4	6653.3	600	555	3	0.26169	0.2617128	-2.275E-05
23	0.4	6658.3	600	555	3	0.26154	0.2615632	-2.316E-05
24	0.4	6663.3	600	555	3	0.26139	0.2614136	-2.356E-05
25	0.4	6668.3	600	555	3	0.26124	0.261264	-2.396E-05
26	0.4	6673.3	600	555	3	0.26109	0.2611144	-2.437E-05
27	0.4	6678.3	600	555	3	0.26094	0.2609648	-2.477E-05
28	0.4	6683.3	600	555	3	0.26079	0.2608152	-2.518E-05
29	0.4	6688.3	600	555	3	0.26065	0.2606656	-1.558E-05
30	0.4	6693.3	600	555	3	0.2605	0.260516	-1.599E-05
31	0.4	6698.3	600	555	3	0.26035	0.2603664	-1.639E-05
32	0.4	6703.3	600	555	3	0.2602	0.2602168	-1.68E-05

34 0.4 6713.3 600 555 3 0.25991 0.2599176 -7. 35 0.4 6718.3 600 555 3 0.25976 0.259768 -8.	72E-05 608E-06
35 0.4 6718.3 600 555 3 0.25976 0.259768 -8.	
	: 013F-06
וסיסון בסבליסו בסבליסו בייסן סבל דייסן סבל דייסן סבל דייסן סבל ווער בייסן סבל דייסן סבל דייסן סבל דייסן סבל דייסן סבל	.013E-06 .418E-06
	.823E-06
	725E-07
	677E-07
	.716E-08
	558E-06
	153E-06
	875E-05
	834E-05
	794E-05
	753E-05
	713E-05
	672E-05
49 0.4 6788.3 600 555 3 0.25771 0.2576737 3.6	632E-05
50 0.4 6793.3 600 555 3 0.25757 0.2575241 4.5	591E-05
51 0.4 6548.3 600 555 3 0.26498 0.2648542 0.0	0001258
52 0.4 6548.3 625 555 3 0.26498 0.2648598 0.0	0001202
53 0.4 6548.3 650 555 3 0.26498 0.2648653 0.0	0001147
54 0.4 6548.3 675 555 3 0.26499 0.2648708 0.0	0001192
55 0.4 6548.3 700 555 3 0.26499 0.2648763 0.0	0001137
56 0.4 6548.3 725 555 3 0.26499 0.2648818 0.0	0001082
57 0.4 6548.3 750 555 3 0.265 0.2648873 0.0	0001127
58 0.4 6548.3 775 555 3 0.265 0.2648928 0.0	0001072
59 0.4 6548.3 800 555 3 0.265 0.2648983 0.0	0001017
60 0.4 6548.3 825 555 3 0.26501 0.2649038 0.0	0001062
61 0.4 6548.3 850 555 3 0.26501 0.2649093 0.0	0001007
62 0.4 6548.3 875 555 3 0.26501 0.2649148 9.5	519E-05
63 0.4 6548.3 900 555 3 0.26502 0.2649203 9.9	968E-05
64 0.4 6548.3 925 555 3 0.26502 0.2649258 9.4	418E-05
65 0.4 6548.3 950 555 3 0.26503 0.2649313 9.8	867E-05
66 0.4 6548.3 975 555 3 0.26503 0.2649368 9.3	316E-05
67 0.4 6548.3 1000 555 3 0.26503 0.2649423 8.7	766E-05

68	0.4	6548.3	1025	555	3	0.26504	0.2649478	9.215E-05
69	0.4	6548.3	1050	555	3	0.26504	0.2649534	8.665E-05
70	0.4	6548.3	1075	555	3	0.26504	0.2649589	8.114E-05
71	0.4	6548.3	1100	555	3	0.26505	0.2649644	8.564E-05
72	0.4	6548.3	1125	555	3	0.26505	0.2649699	8.013E-05
73	0.4	6548.3	1150	555	3	0.26505	0.2649754	7.462E-05
74	0.4	6548.3	1175	555	3	0.26506	0.2649809	7.912E-05
75	0.4	6548.3	1200	555	3	0.26506	0.2649864	7.361E-05
76	0.4	6548.3	1225	555	3	0.26506	0.2649919	6.811E-05
77	0.4	6548.3	1250	555	3	0.26507	0.2649974	7.26E-05
78	0.4	6548.3	1275	555	3	0.26507	0.2650029	6.71E-05
79	0.4	6548.3	1300	555	3	0.26508	0.2650084	7.159E-05
80	0.4	6548.3	1325	555	3	0.26508	0.2650139	6.608E-05
81	0.4	6548.3	1350	555	3	0.26508	0.2650194	6.058E-05
82	0.4	6548.3	1375	555	3	0.26509	0.2650249	6.507E-05
83	0.4	6548.3	1400	555	3	0.26509	0.2650304	5.957E-05
84	0.4	6548.3	1425	555	3	0.26509	0.2650359	5.406E-05
85	0.4	6548.3	1450	555	3	0.2651	0.2650414	5.856E-05
86	0.4	6548.3	1475	555	3	0.2651	0.265047	5.305E-05
87	0.4	6548.3	1500	555	3	0.26511	0.2650525	5.754E-05
88	0.4	6548.3	1525	555	3	0.26511	0.265058	5.204E-05
89	0.4	6548.3	1550	555	3	0.26511	0.2650635	4.653E-05
90	0.4	6548.3	1575	555	3	0.26512	0.265069	5.103E-05
91	0.4	6548.3	1600	555	3	0.26512	0.2650745	4.552E-05
92	0.4	6548.3	1625	555	3	0.26512	0.26508	4.001E-05
93	0.4	6548.3	1650	555	3	0.26513	0.2650855	4.451E-05
94	0.4	6548.3	1675	555	3	0.26513	0.265091	3.9E-05
95	0.4	6548.3	1700	555	3	0.26513	0.2650965	3.35E-05
96	0.4	6548.3	1725	555	3	0.26514	0.265102	3.799E-05
97	0.4	6548.3	1750	555	3	0.26514	0.2651075	3.249E-05
98	0.4	6548.3	1775	555	3	0.26514	0.265113	2.698E-05
99	0.4	6548.3	1800	555	3	0.26515	0.2651185	3.147E-05
100	0.4	6548.3	1825	555	3	0.26515	0.265124	2.597E-05
101	0.4	6548.3	1850	555	3	0.26516	0.2651295	3.046E-05
102	0.4	6548.3	1875	555	3	0.26516	0.265135	2.496E-05

103 0.4 6548.3 1900 555 3 0.26516 0.2651405 1.9458-05 104 0.4 6548.3 1925 555 3 0.26517 0.2651516 1.844E-05 105 0.4 6548.3 1975 555 3 0.26517 0.2651571 1.293E-05 107 0.4 6548.3 2000 555 3 0.26518 0.265166 1.743E-05 108 0.4 6548.3 2025 555 3 0.26518 0.2651736 1.642E-05 109 0.4 6548.3 2050 555 3 0.26519 0.2651791 1.091E-05 110 0.4 6548.3 2100 555 3 0.26519 0.2651791 1.091E-05 111 0.4 6548.3 2105 555 3 0.26521 0.2651901 9.899E-06 112 0.4 6548.3 2150 555 3 0.26521 0.2651101 9.899E-06									
105 0.4 6548.3 1950 555 3 0.265171 0.2651516 1.844E-05 106 0.4 6548.3 1975 555 3 0.26517 0.2651571 1.293E-05 107 0.4 6548.3 2000 555 3 0.26518 0.2651626 1.743E-05 108 0.4 6548.3 2025 555 3 0.26519 0.2651736 1.642E-05 110 0.4 6548.3 2050 555 3 0.26519 0.2651736 1.642E-05 110 0.4 6548.3 2100 555 3 0.26519 0.2651791 1.091E-05 111 0.4 6548.3 2125 555 3 0.26521 0.2651901 9.899E-06 112 0.4 6548.3 2125 555 3 0.26521 0.2651901 9.899E-06 113 0.4 6548.3 2175 555 3 0.26521 0.2651101 8.88E-06	103	0.4	6548.3	1900	555	3	0.26516	0.2651405	1.945E-05
106 0.4 6548.3 1975 555 3 0.26517 0.2651871 1.293€-05 107 0.4 6548.3 2000 555 3 0.26518 0.2651626 1.743Е-05 108 0.4 6548.3 2025 555 3 0.26518 0.265181 1.192E-05 109 0.4 6548.3 2050 555 3 0.26519 0.2651736 1.642E-05 110 0.4 6548.3 2075 555 3 0.26519 0.2651791 1.091E-05 111 0.4 6548.3 2100 555 3 0.26519 0.2651846 5.405E-06 112 0.4 6548.3 2150 555 3 0.2652 0.2651901 9.899E-06 113 0.4 6548.3 2150 555 3 0.26521 0.2652011 9.839E-06 114 0.4 6548.3 2200 555 3 0.26521 0.2652011 8.888E-06	104	0.4	6548.3	1925	555	3	0.26517	0.2651461	2.395E-05
107 0.4 6548.3 2000 555 3 0.26518 0.2651626 1.743E-05 108 0.4 6548.3 2025 555 3 0.26518 0.265192 1.642E-05 109 0.4 6548.3 2050 555 3 0.26519 0.2651736 1.642E-05 110 0.4 6548.3 2075 555 3 0.26519 0.265191 1.091E-05 111 0.4 6548.3 2100 555 3 0.26519 0.2651901 9.899E-06 112 0.4 6548.3 2125 555 3 0.2652 0.2651901 9.899E-06 113 0.4 6548.3 2175 555 3 0.26521 0.2652011 8.888E-06 114 0.4 6548.3 2175 555 3 0.26521 0.2652011 8.888E-06 115 0.4 6548.3 2225 555 3 0.26521 0.2652012 2.274E-06	105	0.4	6548.3	1950	555	3	0.26517	0.2651516	1.844E-05
108 0.4 6548.3 2025 555 3 0.26518 0.2651681 1.192E-05 109 0.4 6548.3 2050 555 3 0.26519 0.2651736 1.642E-05 110 0.4 6548.3 2075 555 3 0.26519 0.2651791 1.091E-05 111 0.4 6548.3 2100 555 3 0.2652 0.2651846 5.405E-06 112 0.4 6548.3 2125 555 3 0.2652 0.2651901 9.899E-06 113 0.4 6548.3 2150 555 3 0.2652 0.2651901 9.899E-06 114 0.4 6548.3 2175 555 3 0.26521 0.2652011 8.88E-06 115 0.4 6548.3 2220 555 3 0.26521 0.2652011 8.88E-06 116 0.4 6548.3 2225 555 3 0.26521 0.2652121 2.214E-06	106	0.4	6548.3	1975	555	3	0.26517	0.2651571	1.293E-05
109 0.4 6548.3 2050 555 3 0.26519 0.2651736 1.642E-05 110 0.4 6548.3 2075 555 3 0.26519 0.2651791 1.091E-05 111 0.4 6548.3 2100 555 3 0.26519 0.2651846 5.405E-06 112 0.4 6548.3 2125 555 3 0.2652 0.2651901 9.899E-06 113 0.4 6548.3 2150 555 3 0.26521 0.2652011 8.888E-06 114 0.4 6548.3 2200 555 3 0.26521 0.2652011 8.888E-06 115 0.4 6548.3 2200 555 3 0.26521 0.2652011 2.371E-06 116 0.4 6548.3 2250 555 3 0.26522 0.2652121 -2.124E-06 117 0.4 6548.3 2250 555 3 0.26522 0.2652231 -3.135E-06	107	0.4	6548.3	2000	555	3	0.26518	0.2651626	1.743E-05
110 0.4 6548.3 2075 555 3 0.26519 0.2651791 1.091E-05 111 0.4 6548.3 2100 555 3 0.26519 0.2651846 5.405E-06 112 0.4 6548.3 2125 555 3 0.2652 0.2651901 9.899E-06 113 0.4 6548.3 2150 555 3 0.26521 0.2652011 8.888E-06 114 0.4 6548.3 2200 555 3 0.26521 0.2652066 3.382E-06 115 0.4 6548.3 2200 555 3 0.26521 0.2652121 -2.124E-06 116 0.4 6548.3 2225 555 3 0.26522 0.2652121 -2.124E-06 117 0.4 6548.3 2250 555 3 0.26522 0.2652231 -3.135E-06 118 0.4 6548.3 2300 555 3 0.26523 0.2652231 -3.135E-06 <tr< td=""><td>108</td><td>0.4</td><td>6548.3</td><td>2025</td><td>555</td><td>3</td><td>0.26518</td><td>0.2651681</td><td>1.192E-05</td></tr<>	108	0.4	6548.3	2025	555	3	0.26518	0.2651681	1.192E-05
111 0.4 6548.3 2100 555 3 0.26519 0.2651846 5.405E-06 112 0.4 6548.3 2125 555 3 0.2652 0.2651901 9.899E-06 113 0.4 6548.3 2150 555 3 0.26521 0.2652011 8.88E-06 114 0.4 6548.3 2200 555 3 0.26521 0.2652011 8.88E-06 115 0.4 6548.3 2200 555 3 0.26521 0.2652011 8.88E-06 116 0.4 6548.3 2225 555 3 0.26522 0.2652121 2.174E-06 117 0.4 6548.3 2225 555 3 0.26522 0.2652211 2.371E-06 118 0.4 6548.3 2275 555 3 0.26522 0.2652211 2.371E-06 119 0.4 6548.3 2300 555 3 0.26522 0.2652231 3.135E-06	109	0.4	6548.3	2050	555	3	0.26519	0.2651736	1.642E-05
112 0.4 6548.3 2125 555 3 0.2652 0.2651901 9.899E-06 113 0.4 6548.3 2150 555 3 0.2652 0.2651956 4.394E-06 114 0.4 6548.3 2175 555 3 0.26521 0.2652011 8.88E-06 115 0.4 6548.3 2200 555 3 0.26521 0.2652066 3.382E-06 116 0.4 6548.3 2225 555 3 0.265221 0.26521121 2.124E-06 117 0.4 6548.3 2225 555 3 0.26522 0.2652211 2.371E-06 118 0.4 6548.3 2275 555 3 0.26522 0.2652231 -3.135E-06 119 0.4 6548.3 2300 555 3 0.26522 0.2652231 -3.135E-06 120 0.4 6548.3 2325 555 3 0.265223 0.2652241 -4.147E-06 <tr< td=""><td>110</td><td>0.4</td><td>6548.3</td><td>2075</td><td>555</td><td>3</td><td>0.26519</td><td>0.2651791</td><td>1.091E-05</td></tr<>	110	0.4	6548.3	2075	555	3	0.26519	0.2651791	1.091E-05
113 0.4 6548.3 2150 555 3 0.2652 0.2651956 4.394E-06 114 0.4 6548.3 2175 555 3 0.26521 0.2652011 8.888E-06 115 0.4 6548.3 2200 555 3 0.26521 0.2652066 3.382E-06 116 0.4 6548.3 2225 555 3 0.26522 0.2652121 -2.124E-06 117 0.4 6548.3 2250 555 3 0.26522 0.2652176 2.371E-06 118 0.4 6548.3 2275 555 3 0.26522 0.2652231 -3.135E-06 119 0.4 6548.3 2300 555 3 0.26523 0.2652266 1.359E-06 120 0.4 6548.3 2350 555 3 0.26523 0.2652286 1.359E-06 121 0.4 6548.3 2375 555 3 0.26523 0.2652286 1.558E-06	111	0.4	6548.3	2100	555	3	0.26519	0.2651846	5.405E-06
114 0.4 6548.3 2175 555 3 0.26521 0.2652011 8.888E-06 115 0.4 6548.3 2200 555 3 0.26521 0.2652066 3.382E-06 116 0.4 6548.3 2225 555 3 0.26521 0.2652121 -2.124E-06 117 0.4 6548.3 2250 555 3 0.26522 0.2652176 2.371E-06 118 0.4 6548.3 2275 555 3 0.26522 0.2652231 -3.135E-06 119 0.4 6548.3 2300 555 3 0.26523 0.2652286 1.359E-06 120 0.4 6548.3 2325 555 3 0.26523 0.26522401 -4.147E-06 121 0.4 6548.3 2350 555 3 0.26523 0.26522401 -4.147E-06 122 0.4 6548.3 2375 555 3 0.26524 0.2652452 -5.158E-06	112	0.4	6548.3	2125	555	3	0.2652	0.2651901	9.899E-06
115 0.4 6548.3 2200 555 3 0.26521 0.2652066 3.382E-06 116 0.4 6548.3 2225 555 3 0.26521 0.2652121 -2.124E-06 117 0.4 6548.3 2250 555 3 0.26522 0.2652176 2.371E-06 118 0.4 6548.3 2275 555 3 0.26522 0.2652231 -3.135E-06 119 0.4 6548.3 2300 555 3 0.26523 0.2652286 1.359E-06 120 0.4 6548.3 2325 555 3 0.26523 0.2652341 -4.147E-06 121 0.4 6548.3 2350 555 3 0.26523 0.2652341 -4.147E-06 122 0.4 6548.3 2375 555 3 0.26524 0.2652397 -9.652E-06 123 0.4 6548.3 2400 555 3 0.26524 0.2652507 -1.066E-05 124 0.4 6548.3 2450 555 3 0.26526 <t< td=""><td>113</td><td>0.4</td><td>6548.3</td><td>2150</td><td>555</td><td>3</td><td>0.2652</td><td>0.2651956</td><td>4.394E-06</td></t<>	113	0.4	6548.3	2150	555	3	0.2652	0.2651956	4.394E-06
116 0.4 6548.3 2225 555 3 0.26521 0.2652121 -2.124E-06 117 0.4 6548.3 2250 555 3 0.26522 0.2652176 2.371E-06 118 0.4 6548.3 2275 555 3 0.26522 0.2652231 -3.135E-06 119 0.4 6548.3 2300 555 3 0.26523 0.2652286 1.359E-06 120 0.4 6548.3 2325 555 3 0.26523 0.2652341 -4.147E-06 121 0.4 6548.3 2350 555 3 0.26523 0.2652397 -9.652E-06 122 0.4 6548.3 2375 555 3 0.26524 0.2652492 -5.158E-06 123 0.4 6548.3 2400 555 3 0.26524 0.2652507 -1.066E-05 124 0.4 6548.3 2425 555 3 0.26526 0.2652607 -1.168E-05 125 0.4 6548.3 2475 555 3 0.26525 <	114	0.4	6548.3	2175	555	3	0.26521	0.2652011	8.888E-06
117 0.4 6548.3 2250 555 3 0.265222 0.2652216 2.371E-06 118 0.4 6548.3 2275 555 3 0.26522 0.2652231 -3.135E-06 119 0.4 6548.3 2300 555 3 0.26523 0.2652286 1.359E-06 120 0.4 6548.3 2350 555 3 0.26523 0.2652341 -4.147E-06 121 0.4 6548.3 2350 555 3 0.26523 0.2652397 -9.652E-06 122 0.4 6548.3 2375 555 3 0.26524 0.2652397 -9.652E-06 123 0.4 6548.3 2400 555 3 0.26524 0.2652507 -1.066E-05 124 0.4 6548.3 2450 555 3 0.26524 0.2652562 -1.617E-05 125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2500 555 3 0.26526	115	0.4	6548.3	2200	555	3	0.26521	0.2652066	3.382E-06
118 0.4 6548.3 2275 555 3 0.26522 0.2652231 -3.135E-06 119 0.4 6548.3 2300 555 3 0.26523 0.2652286 1.359E-06 120 0.4 6548.3 2325 555 3 0.26523 0.2652341 -4.147E-06 121 0.4 6548.3 2350 555 3 0.26523 0.2652397 -9.652E-06 122 0.4 6548.3 2375 555 3 0.26524 0.2652452 -5.158E-06 123 0.4 6548.3 2400 555 3 0.26524 0.26525507 -1.066E-05 124 0.4 6548.3 2425 555 3 0.26524 0.2652562 -1.617E-05 125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2475 555 3 0.26525 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526	116	0.4	6548.3	2225	555	3	0.26521	0.2652121	-2.124E-06
119 0.4 6548.3 2300 555 3 0.26523 0.2652366 1.359E-06 120 0.4 6548.3 2325 555 3 0.26523 0.2652341 -4.147E-06 121 0.4 6548.3 2350 555 3 0.26523 0.2652397 -9.652E-06 122 0.4 6548.3 2375 555 3 0.26524 0.2652452 -5.158E-06 123 0.4 6548.3 2400 555 3 0.26524 0.2652507 -1.066E-05 124 0.4 6548.3 2425 555 3 0.26524 0.2652502 -1.617E-05 125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2475 555 3 0.26525 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526 0.2652727 -1.269E-05 128 0.4 6548.3 2575 555 3 0.26526	117	0.4	6548.3	2250	555	3	0.26522	0.2652176	2.371E-06
120 0.4 6548.3 2325 555 3 0.26523 0.2652341 -4.147E-06 121 0.4 6548.3 2350 555 3 0.26523 0.2652397 -9.652E-06 122 0.4 6548.3 2375 555 3 0.26524 0.2652452 -5.158E-06 123 0.4 6548.3 2400 555 3 0.26524 0.2652507 -1.066E-05 124 0.4 6548.3 2425 555 3 0.26524 0.2652502 -1.617E-05 125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2475 555 3 0.26526 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526 0.2652727 -1.269E-05 128 0.4 6548.3 2555 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2575 555 3 0.26526	118	0.4	6548.3	2275	555	3	0.26522	0.2652231	-3.135E-06
121 0.4 6548.3 2350 555 3 0.26523 0.2652397 -9.652E-06 122 0.4 6548.3 2375 555 3 0.26524 0.2652452 -5.158E-06 123 0.4 6548.3 2400 555 3 0.26524 0.2652507 -1.066E-05 124 0.4 6548.3 2425 555 3 0.26524 0.2652562 -1.617E-05 125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2475 555 3 0.26525 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526 0.2652772 -1.269E-05 128 0.4 6548.3 2525 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2575 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2600 555 3 0.26527	119	0.4	6548.3	2300	555	3	0.26523	0.2652286	1.359E-06
122 0.4 6548.3 2375 555 3 0.26524 0.2652452 -5.158E-06 123 0.4 6548.3 2400 555 3 0.26524 0.2652507 -1.066E-05 124 0.4 6548.3 2425 555 3 0.26524 0.2652562 -1.617E-05 125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2475 555 3 0.26526 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526 0.2652772 -1.269E-05 128 0.4 6548.3 2550 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2550 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2625 555 3 0.26527 <	120	0.4	6548.3	2325	555	3	0.26523	0.2652341	-4.147E-06
123 0.4 6548.3 2400 555 3 0.26524 0.2652507 -1.066E-05 124 0.4 6548.3 2425 555 3 0.26524 0.2652562 -1.617E-05 125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2475 555 3 0.26525 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526 0.2652727 -1.269E-05 128 0.4 6548.3 2550 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2550 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2600 555 3 0.26527 0.2652892 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 <	121	0.4	6548.3	2350	555	3	0.26523	0.2652397	-9.652E-06
124 0.4 6548.3 2425 555 3 0.26524 0.2652562 -1.617E-05 125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2475 555 3 0.26525 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526 0.2652727 -1.269E-05 128 0.4 6548.3 2525 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2550 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2600 555 3 0.26527 0.2652892 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 <	122	0.4	6548.3	2375	555	3	0.26524	0.2652452	-5.158E-06
125 0.4 6548.3 2450 555 3 0.26525 0.2652617 -1.168E-05 126 0.4 6548.3 2475 555 3 0.26525 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526 0.2652727 -1.269E-05 128 0.4 6548.3 2525 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2550 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2600 555 3 0.26527 0.2652947 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 <	123	0.4	6548.3	2400	555	3	0.26524	0.2652507	-1.066E-05
126 0.4 6548.3 2475 555 3 0.26525 0.2652672 -1.718E-05 127 0.4 6548.3 2500 555 3 0.26526 0.2652727 -1.269E-05 128 0.4 6548.3 2525 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2550 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2600 555 3 0.26527 0.2652947 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 <	124	0.4	6548.3	2425	555	3	0.26524	0.2652562	-1.617E-05
127 0.4 6548.3 2500 555 3 0.26526 0.2652727 -1.269E-05 128 0.4 6548.3 2525 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2550 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2600 555 3 0.26527 0.2652947 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 <	125	0.4	6548.3	2450	555	3	0.26525	0.2652617	-1.168E-05
128 0.4 6548.3 2525 555 3 0.26526 0.2652782 -1.819E-05 129 0.4 6548.3 2550 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2600 555 3 0.26527 0.2652947 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	126	0.4	6548.3	2475	555	3	0.26525	0.2652672	-1.718E-05
129 0.4 6548.3 2550 555 3 0.26526 0.2652837 -2.37E-05 130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2600 555 3 0.26527 0.2652947 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	127	0.4	6548.3	2500	555	3	0.26526	0.2652727	-1.269E-05
130 0.4 6548.3 2575 555 3 0.26527 0.2652892 -1.92E-05 131 0.4 6548.3 2600 555 3 0.26527 0.2652947 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	128	0.4	6548.3	2525	555	3	0.26526	0.2652782	-1.819E-05
131 0.4 6548.3 2600 555 3 0.26527 0.2652947 -2.471E-05 132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	129	0.4	6548.3	2550	555	3	0.26526	0.2652837	-2.37E-05
132 0.4 6548.3 2625 555 3 0.26527 0.2653002 -3.022E-05 133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	130	0.4	6548.3	2575	555	3	0.26527	0.2652892	-1.92E-05
133 0.4 6548.3 2650 555 3 0.26528 0.2653057 -2.572E-05 134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	131	0.4	6548.3	2600	555	3	0.26527	0.2652947	-2.471E-05
134 0.4 6548.3 2675 555 3 0.26528 0.2653112 -3.123E-05 135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	132	0.4	6548.3	2625	555	3	0.26527	0.2653002	-3.022E-05
135 0.4 6548.3 2700 555 3 0.26529 0.2653167 -2.673E-05 136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	133	0.4	6548.3	2650	555	3	0.26528	0.2653057	-2.572E-05
136 0.4 6548.3 2725 555 3 0.26529 0.2653222 -3.224E-05	134	0.4	6548.3	2675	555	3	0.26528	0.2653112	-3.123E-05
	135	0.4	6548.3	2700	555	3	0.26529	0.2653167	-2.673E-05
137 0.4 6548.3 2750 555 3 0.26529 0.2653277 -3.774E-05	136	0.4	6548.3	2725	555	3	0.26529	0.2653222	-3.224E-05
	137	0.4	6548.3	2750	555	3	0.26529	0.2653277	-3.774E-05

138 0.4 6548.3 2800 555 3 0.26533 0.265333 -3.876E-05 140 0.4 6548.3 2800 555 3 0.26531 0.265338 -3.876E-05 141 0.4 6548.3 2825 555 3 0.26531 0.26531 0.2653498 -3.977E-05 142 0.4 6548.3 2825 555 3 0.26531 0.26531 0.2653498 -3.977E-05 142 0.4 6548.3 2875 555 3 0.26531 0.26532 0.2653408 -3.977E-05 143 0.4 6548.3 2900 555 3 0.26532 0.265320 4.527E-05 144 0.4 6548.3 2950 555 3 0.26532 0.265320 4.078E-05 144 0.4 6548.3 2950 555 3 0.26532 0.265363 -4.629E-05 145 0.4 6548.3 2950 555 3 0.26533 0.26533 0.265378 -4.179E-05 146 0.4 6548.3 2975 555 3 0.26533 0.26533 0.265378 -4.73E-05 147 0.4 6548.3 3000 555 3 0.26533 0.265333 0.265378 -4.73E-05 147 0.4 6548.3 3000 555 3 0.26534 0.2653498 -5.381E-05 149 0.4 6548.3 3005 555 3 0.26534 0.265349 -5.381E-05 150 0.4 6548.3 3050 555 3 0.26534 0.265349 -5.381E-05 150 0.4 6548.3 3075 555 3 0.26534 0.2653938 -5.381E-05 150 0.4 6548.3 600 555.09 3 0.26634 0.2653938 -5.381E-05 150 0.4 6548.3 600 555.09 3 0.26649 0.264971 0.0001089 152 0.4 6548.3 600 555.09 3 0.26949 0.26498 0.2648711 0.0001089 155 0.4 6548.3 600 605.09 3 0.27384 0.278490 -6.668E-05 150 0.4 6548.3 600 605.09 3 0.27849 0.278490 0.0003782 155 0.4 6548.3 600 605.09 3 0.27849 0.278490 0.0003782 155 0.4 6548.3 600 605.09 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 600.99 3 0.28249 0.2828682 -0.0003782 155 0.4 6548.3 600 800.99 3 0.30325 0.3037278 -0.0004274 156 0.4 6548.3 600 9.009 3 0.303726 0.3037278 -0.0004275 156 0.4 6548.3 600 9.009 3 0.30309 0.33155 0.331694 -0.0004274 166 0.4 6548.3 600 9.009 3 0.33099 0.330	120	0.4	CE 40.2	2775	FFF	12	0.2652	0.2652222	2 2255 05
140 0.4 6548.3 2825 555 3 0.265311 0.2653443 -3.426E-05 141 0.4 6548.3 2850 555 3 0.26531 0.2653498 -3.977E-05 142 0.4 6548.3 2875 555 3 0.26532 0.2653608 -4.078E-05 143 0.4 6548.3 2900 555 3 0.26532 0.2653663 -4.629E-05 144 0.4 6548.3 2925 555 3 0.26533 0.2653718 -4.179E-05 145 0.4 6548.3 2950 555 3 0.26533 0.2653718 -4.179E-05 146 0.4 6548.3 3000 555 3 0.26533 0.265378 -5.28E-05 147 0.4 6548.3 3025 555 3 0.26534 0.265388 -5.28E-05 148 0.4 6548.3 3050 555 3 0.26534 0.2653989 -5.38IE-05				<u> </u>			l		
141 0.4 6548.3 2850 555 3 0.26531 0.2653498 -3.977E-05 142 0.4 6548.3 2875 555 3 0.26531 0.2653553 -4.527E-05 143 0.4 6548.3 2900 555 3 0.26532 0.2653608 -4.078E-05 144 0.4 6548.3 2925 555 3 0.26532 0.265363 -4.629E-05 145 0.4 6548.3 2950 555 3 0.26533 0.2653718 -4.179E-05 146 0.4 6548.3 3000 555 3 0.26533 0.2653773 -4.73E-05 147 0.4 6548.3 3000 555 3 0.26534 0.2653883 -4.83IE-05 149 0.4 6548.3 3005 555 3 0.26534 0.2653883 -5.38IE-05 150 0.4 6548.3 3007 555.09 3 0.26534 0.265398 -5.38IE-05									
142 0.4 6548.3 2875 555 3 0.26531 0.2653553 -4.527E-05 143 0.4 6548.3 2900 555 3 0.26532 0.2653608 -4.078E-05 144 0.4 6548.3 2925 555 3 0.26532 0.2653663 -4.629E-05 145 0.4 6548.3 2950 555 3 0.26533 0.2653778 -4.73E-05 146 0.4 6548.3 2975 555 3 0.26533 0.2653773 -4.73E-05 147 0.4 6548.3 3000 555 3 0.26533 0.2653828 -5.28E-05 148 0.4 6548.3 3025 555 3 0.26534 0.2653883 -4.831E-05 150 0.4 6548.3 3075 555 3 0.26534 0.2653938 -5.381E-05 151 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001497		0.4					0.26531	0.2653443	
143 0.4 6548.3 2900 555 3 0.26532 0.2653608 -4.078E-05 144 0.4 6548.3 2925 555 3 0.26532 0.2653663 -4.629E-05 145 0.4 6548.3 2950 555 3 0.26533 0.2653773 -4.73E-05 146 0.4 6548.3 3000 555 3 0.26533 0.2653773 -4.73E-05 147 0.4 6548.3 3000 555 3 0.26534 0.2653828 -5.28E-05 148 0.4 6548.3 3025 555 3 0.26534 0.2653883 -4.831E-05 149 0.4 6548.3 3050 555 3 0.26534 0.2653938 -5.381E-05 150 0.4 6548.3 3075 555 3 0.26534 0.2653993 -5.932E-05 151 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001497	141	0.4	6548.3	2850	555	3	0.26531	0.2653498	-3.977E-05
144 0.4 6548.3 2925 555 3 0.26532 0.2653663 -4.629E-05 145 0.4 6548.3 2950 555 3 0.26533 0.2653718 -4.179E-05 146 0.4 6548.3 2975 555 3 0.26533 0.2653773 -4.73E-05 147 0.4 6548.3 3000 555 3 0.26534 0.2653883 -4.831E-05 148 0.4 6548.3 3050 555 3 0.26534 0.2653988 -5.381E-05 150 0.4 6548.3 3075 555 3 0.26534 0.2653993 -5.932E-05 151 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001089 152 0.4 6548.3 600 580.09 3 0.27384 0.2740347 -0.0001947 154 0.4 6548.3 600 650.09 3 0.27819 0.2784903 -0.000303 <td>142</td> <td>0.4</td> <td>6548.3</td> <td>2875</td> <td>555</td> <td>3</td> <td>0.26531</td> <td>0.2653553</td> <td>-4.527E-05</td>	142	0.4	6548.3	2875	555	3	0.26531	0.2653553	-4.527E-05
145 0.4 6548.3 2950 555 3 0.26533 0.2653718 -4.179E-05 146 0.4 6548.3 2975 555 3 0.26533 0.2653773 -4.73E-05 147 0.4 6548.3 3000 555 3 0.26533 0.2653828 -5.28E-05 148 0.4 6548.3 3050 555 3 0.26534 0.2653938 -5.381E-05 150 0.4 6548.3 3050 555 3 0.26534 0.2653993 -5.932E-05 151 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001089 152 0.4 6548.3 600 580.09 3 0.27384 0.2740347 -0.0001947 153 0.4 6548.3 600 695.09 3 0.278490 0.2740347 -0.0001947 154 0.4 6548.3 600 650.09 3 0.27819 0.2784903 -0.000303 </td <td>143</td> <td>0.4</td> <td>6548.3</td> <td>2900</td> <td>555</td> <td>3</td> <td>0.26532</td> <td>0.2653608</td> <td>-4.078E-05</td>	143	0.4	6548.3	2900	555	3	0.26532	0.2653608	-4.078E-05
146 0.4 6548.3 2975 555 3 0.2653373 0.2653773 -4.73E-05 147 0.4 6548.3 3000 555 3 0.26533 0.2653828 -5.28E-05 148 0.4 6548.3 3025 555 3 0.26534 0.2653838 -4.831E-05 149 0.4 6548.3 3050 555 3 0.26534 0.2653993 -5.932E-05 150 0.4 6548.3 600 555.09 3 0.269498 0.2648711 0.0001089 151 0.4 6548.3 600 580.09 3 0.26949 0.2648711 0.0001089 152 0.4 6548.3 600 655.09 3 0.27849 0.2649871 -0.0001147 154 0.4 6548.3 600 650.09 3 0.2784903 -0.000303 155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 <	144	0.4	6548.3	2925	555	3	0.26532	0.2653663	-4.629E-05
147 0.4 6548.3 3000 555 3 0.26533 0.2653828 -5.28E-05 148 0.4 6548.3 3025 555 3 0.26534 0.2653883 -4.831E-05 149 0.4 6548.3 3050 555 3 0.26534 0.2653938 -5.381E-05 150 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001089 151 0.4 6548.3 600 580.09 3 0.26949 0.2649667 -6.668E-05 153 0.4 6548.3 600 605.09 3 0.27384 0.270347 -0.0001947 154 0.4 6548.3 600 630.09 3 0.27819 0.2784903 -0.000303 155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004325	145	0.4	6548.3	2950	555	3	0.26533	0.2653718	-4.179E-05
148 0.4 6548.3 3025 555 3 0.26534 0.2653883 -4.831E-05 149 0.4 6548.3 3050 555 3 0.26534 0.2653938 -5.381E-05 150 0.4 6548.3 3075 555 3 0.26498 0.2648711 0.0001089 151 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001089 152 0.4 6548.3 600 580.09 3 0.27384 0.2740347 -0.0001947 154 0.4 6548.3 600 605.09 3 0.27819 0.2784903 -0.0001947 154 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003003 155 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004325 157 0.4 6548.3 600 705.09 3 0.29094 0.2914073 -0.0004673	146	0.4	6548.3	2975	555	3	0.26533	0.2653773	-4.73E-05
149 0.4 6548.3 3050 555 3 0.26534 0.2653938 -5.381E-05 150 0.4 6548.3 3075 555 3 0.26534 0.2653993 -5.932E-05 151 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001089 152 0.4 6548.3 600 580.09 3 0.27384 0.2740347 -0.0001947 154 0.4 6548.3 600 630.09 3 0.27819 0.2784903 -0.0003003 155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004325 157 0.4 6548.3 600 705.09 3 0.29094 0.2914073 -0.0004673 158 0.4 6548.3 600 755.09 3 0.29509 0.295576 -0.000488	147	0.4	6548.3	3000	555	3	0.26533	0.2653828	-5.28E-05
150 0.4 6548.3 3075 555 3 0.26534 0.2653993 -5.932E-05 151 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001089 152 0.4 6548.3 600 580.09 3 0.26943 0.2694967 -6.668E-05 153 0.4 6548.3 600 605.09 3 0.27819 0.2784903 -0.0001947 154 0.4 6548.3 600 630.09 3 0.27819 0.2784903 -0.0003003 155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004325 157 0.4 6548.3 600 750.09 3 0.29904 0.2914073 -0.0004673 158 0.4 6548.3 600 755.09 3 0.2995 0.2996818 -0.000488 <td>148</td> <td>0.4</td> <td>6548.3</td> <td>3025</td> <td>555</td> <td>3</td> <td>0.26534</td> <td>0.2653883</td> <td>-4.831E-05</td>	148	0.4	6548.3	3025	555	3	0.26534	0.2653883	-4.831E-05
151 0.4 6548.3 600 555.09 3 0.26498 0.2648711 0.0001089 152 0.4 6548.3 600 580.09 3 0.26943 0.2694967 -6.668E-05 153 0.4 6548.3 600 605.09 3 0.27384 0.2740347 -0.0001947 154 0.4 6548.3 600 630.09 3 0.27819 0.2784903 -0.0003003 155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004825 157 0.4 6548.3 600 705.09 3 0.29094 0.2914073 -0.0004673 158 0.4 6548.3 600 730.09 3 0.29509 0.295576 -0.000486 159 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 </td <td>149</td> <td>0.4</td> <td>6548.3</td> <td>3050</td> <td>555</td> <td>3</td> <td>0.26534</td> <td>0.2653938</td> <td>-5.381E-05</td>	149	0.4	6548.3	3050	555	3	0.26534	0.2653938	-5.381E-05
152 0.4 6548.3 600 580.09 3 0.26943 0.2694967 -6.668E-05 153 0.4 6548.3 600 605.09 3 0.27384 0.2740347 -0.0001947 154 0.4 6548.3 600 630.09 3 0.27819 0.2784903 -0.0003003 155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004573 157 0.4 6548.3 600 705.09 3 0.29904 0.2914073 -0.0004673 158 0.4 6548.3 600 730.09 3 0.299509 0.295576 -0.000486 159 0.4 6548.3 600 755.09 3 0.2992 0.2996818 -0.0004818 160 0.4 6548.3 600 805.09 3 0.30726 0.3077167 -0.0004567<	150	0.4	6548.3	3075	555	3	0.26534	0.2653993	-5.932E-05
153 0.4 6548.3 600 605.09 3 0.27384 0.2740347 -0.0001947 154 0.4 6548.3 600 630.09 3 0.27819 0.2784903 -0.0003003 155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004325 157 0.4 6548.3 600 705.09 3 0.29094 0.2914073 -0.0004673 158 0.4 6548.3 600 730.09 3 0.29509 0.295576 -0.000486 159 0.4 6548.3 600 755.09 3 0.2992 0.2996818 -0.0004818 160 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 161 0.4 6548.3 600 805.09 3 0.31123 0.311651 -0.0004274 <td>151</td> <td>0.4</td> <td>6548.3</td> <td>600</td> <td>555.09</td> <td>3</td> <td>0.26498</td> <td>0.2648711</td> <td>0.0001089</td>	151	0.4	6548.3	600	555.09	3	0.26498	0.2648711	0.0001089
154 0.4 6548.3 600 630.09 3 0.27819 0.2784903 -0.0003003 155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004325 157 0.4 6548.3 600 705.09 3 0.29094 0.2914073 -0.0004673 158 0.4 6548.3 600 730.09 3 0.299509 0.295576 -0.000486 159 0.4 6548.3 600 755.09 3 0.2992 0.2996818 -0.0004818 160 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 161 0.4 6548.3 600 805.09 3 0.31123 0.311651 -0.0004567 162 0.4 6548.3 600 855.09 3 0.3155331 -0.000421	152	0.4	6548.3	600	580.09	3	0.26943	0.2694967	-6.668E-05
155 0.4 6548.3 600 655.09 3 0.28249 0.2828682 -0.0003782 156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004325 157 0.4 6548.3 600 705.09 3 0.29094 0.2914073 -0.0004673 158 0.4 6548.3 600 730.09 3 0.29509 0.295576 -0.000486 159 0.4 6548.3 600 755.09 3 0.2992 0.2996818 -0.0004818 160 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 161 0.4 6548.3 600 805.09 3 0.31651 -0.0004567 162 0.4 6548.3 600 855.09 3 0.31515 0.3155331 -0.000421 163 0.4 6548.3 600 880.09 3 0.31902 0.3193652 -0.0003452	153	0.4	6548.3	600	605.09	3	0.27384	0.2740347	-0.0001947
156 0.4 6548.3 600 680.09 3 0.28674 0.2871725 -0.0004325 157 0.4 6548.3 600 705.09 3 0.29094 0.2914073 -0.0004673 158 0.4 6548.3 600 730.09 3 0.29509 0.295576 -0.000486 159 0.4 6548.3 600 755.09 3 0.2992 0.2996818 -0.0004818 160 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 161 0.4 6548.3 600 805.09 3 0.30726 0.3077167 -0.0004567 162 0.4 6548.3 600 830.09 3 0.31123 0.311651 -0.000421 163 0.4 6548.3 600 855.09 3 0.3193652 -0.0003831 164 0.4 6548.3 600 880.09 3 0.32285 0.3231494 -0.000294	154	0.4	6548.3	600	630.09	3	0.27819	0.2784903	-0.0003003
157 0.4 6548.3 600 705.09 3 0.29094 0.2914073 -0.0004673 158 0.4 6548.3 600 730.09 3 0.29509 0.295576 -0.000486 159 0.4 6548.3 600 755.09 3 0.2992 0.2996818 -0.0004818 160 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 161 0.4 6548.3 600 805.09 3 0.3077167 -0.0004567 162 0.4 6548.3 600 830.09 3 0.31123 0.311651 -0.000421 163 0.4 6548.3 600 855.09 3 0.3155331 -0.0003831 164 0.4 6548.3 600 880.09 3 0.3193652 -0.0003452 165 0.4 6548.3 600 905.09 3 0.32664 0.3268874 -0.0002994 166 0.4	155	0.4	6548.3	600	655.09	3	0.28249	0.2828682	-0.0003782
158 0.4 6548.3 600 730.09 3 0.29509 0.295576 -0.000486 159 0.4 6548.3 600 755.09 3 0.2992 0.2996818 -0.0004818 160 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 161 0.4 6548.3 600 805.09 3 0.30726 0.3077167 -0.0004567 162 0.4 6548.3 600 830.09 3 0.31123 0.311651 -0.000421 163 0.4 6548.3 600 855.09 3 0.3155331 -0.0003831 164 0.4 6548.3 600 880.09 3 0.31902 0.3193652 -0.0003452 165 0.4 6548.3 600 905.09 3 0.32285 0.3231494 -0.0002994 166 0.4 6548.3 600 930.09 3 0.33039 0.3305812 -0.0001912	156	0.4	6548.3	600	680.09	3	0.28674	0.2871725	-0.0004325
159 0.4 6548.3 600 755.09 3 0.2992 0.2996818 -0.0004818 160 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 161 0.4 6548.3 600 805.09 3 0.30726 0.3077167 -0.0004567 162 0.4 6548.3 600 830.09 3 0.31123 0.311651 -0.000421 163 0.4 6548.3 600 855.09 3 0.31515 0.3155331 -0.0003831 164 0.4 6548.3 600 880.09 3 0.31902 0.3193652 -0.0003452 165 0.4 6548.3 600 905.09 3 0.32285 0.3231494 -0.0002994 166 0.4 6548.3 600 930.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0	157	0.4	6548.3	600	705.09	3	0.29094	0.2914073	-0.0004673
160 0.4 6548.3 600 780.09 3 0.30325 0.3037278 -0.0004778 161 0.4 6548.3 600 805.09 3 0.30726 0.3077167 -0.0004567 162 0.4 6548.3 600 830.09 3 0.31123 0.311651 -0.000421 163 0.4 6548.3 600 855.09 3 0.31555331 -0.0003831 164 0.4 6548.3 600 880.09 3 0.31902 0.3193652 -0.0003452 165 0.4 6548.3 600 905.09 3 0.32285 0.3231494 -0.0002994 166 0.4 6548.3 600 930.09 3 0.32664 0.3268874 -0.0002474 167 0.4 6548.3 600 955.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.34138 <td< td=""><td>158</td><td>0.4</td><td>6548.3</td><td>600</td><td>730.09</td><td>3</td><td>0.29509</td><td>0.295576</td><td>-0.000486</td></td<>	158	0.4	6548.3	600	730.09	3	0.29509	0.295576	-0.000486
161 0.4 6548.3 600 805.09 3 0.30726 0.3077167 -0.0004567 162 0.4 6548.3 600 830.09 3 0.31123 0.311651 -0.000421 163 0.4 6548.3 600 855.09 3 0.31515 0.3155331 -0.0003831 164 0.4 6548.3 600 880.09 3 0.31902 0.3193652 -0.0003452 165 0.4 6548.3 600 905.09 3 0.32285 0.3231494 -0.0002994 166 0.4 6548.3 600 930.09 3 0.32664 0.3268874 -0.0002474 167 0.4 6548.3 600 955.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.34736 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3	159	0.4	6548.3	600	755.09	3	0.2992	0.2996818	-0.0004818
162 0.4 6548.3 600 830.09 3 0.31123 0.311651 -0.000421 163 0.4 6548.3 600 855.09 3 0.31515 0.3155331 -0.0003831 164 0.4 6548.3 600 880.09 3 0.31902 0.3193652 -0.0003452 165 0.4 6548.3 600 905.09 3 0.32285 0.3231494 -0.0002994 166 0.4 6548.3 600 930.09 3 0.32664 0.3268874 -0.0002474 167 0.4 6548.3 600 955.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.33776 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3	160	0.4	6548.3	600	780.09	3	0.30325	0.3037278	-0.0004778
163 0.4 6548.3 600 855.09 3 0.31515 0.3155331 -0.0003831 164 0.4 6548.3 600 880.09 3 0.31902 0.3193652 -0.0003452 165 0.4 6548.3 600 905.09 3 0.32285 0.3231494 -0.0002994 166 0.4 6548.3 600 930.09 3 0.32664 0.3268874 -0.0002474 167 0.4 6548.3 600 955.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.33776 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	161	0.4	6548.3	600	805.09	3	0.30726	0.3077167	-0.0004567
164 0.4 6548.3 600 880.09 3 0.31902 0.3193652 -0.0003452 165 0.4 6548.3 600 905.09 3 0.32285 0.3231494 -0.0002994 166 0.4 6548.3 600 930.09 3 0.32664 0.3268874 -0.0002474 167 0.4 6548.3 600 955.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.33776 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	162	0.4	6548.3	600	830.09	3	0.31123	0.311651	-0.000421
165 0.4 6548.3 600 905.09 3 0.32285 0.3231494 -0.0002994 166 0.4 6548.3 600 930.09 3 0.32664 0.3268874 -0.0002474 167 0.4 6548.3 600 955.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.33776 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	163	0.4	6548.3	600	855.09	3	0.31515	0.3155331	-0.0003831
166 0.4 6548.3 600 930.09 3 0.32664 0.3268874 -0.0002474 167 0.4 6548.3 600 955.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.33776 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	164	0.4	6548.3	600	880.09	3	0.31902	0.3193652	-0.0003452
167 0.4 6548.3 600 955.09 3 0.33039 0.3305812 -0.0001912 168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.33776 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	165	0.4	6548.3	600	905.09	3	0.32285	0.3231494	-0.0002994
168 0.4 6548.3 600 980.09 3 0.33409 0.3342323 -0.0001423 169 0.4 6548.3 600 1005.1 3 0.33776 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	166	0.4	6548.3	600	930.09	3	0.32664	0.3268874	-0.0002474
169 0.4 6548.3 600 1005.1 3 0.33776 0.3378437 -8.375E-05 170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	167	0.4	6548.3	600	955.09	3	0.33039	0.3305812	-0.0001912
170 0.4 6548.3 600 1030.1 3 0.34138 0.3414142 -3.417E-05 171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	168	0.4	6548.3	600	980.09	3	0.33409	0.3342323	-0.0001423
171 0.4 6548.3 600 1055.1 3 0.34497 0.3449464 2.364E-05	169	0.4	6548.3	600	1005.1	3	0.33776	0.3378437	-8.375E-05
	170	0.4	6548.3	600	1030.1	3	0.34138	0.3414142	-3.417E-05
172 0.4 6548.3 600 1080.1 3 0.34851 0.3484416 6.836E-05	171	0.4	6548.3	600	1055.1	3	0.34497	0.3449464	2.364E-05
	172	0.4	6548.3	600	1080.1	3	0.34851	0.3484416	6.836E-05

173	0.4	6548.3	600	1105.1	3	0.35202	0.3519012	0.0001188
174	0.4	6548.3	600	1130.1	3	0.35549	0.3553263	0.0001637
175	0.4	6548.3	600	1155.1	3	0.35893	0.3587179	0.0002121
176	0.4	6548.3	600	1180.1	3	0.36232	0.3620771	0.0002429
177	0.4	6548.3	600	1205.1	3	0.36569	0.3654048	0.0002852
178	0.4	6548.3	600	1230.1	3	0.36901	0.3687022	0.0003078
179	0.4	6548.3	600	1255.1	3	0.3723	0.3719699	0.0003301
180	0.4	6548.3	600	1280.1	3	0.37556	0.3752089	0.0003511
181	0.4	6548.3	600	1305.1	3	0.37878	0.3784199	0.0003601
182	0.4	6548.3	600	1330.1	3	0.38198	0.3816038	0.0003762
183	0.4	6548.3	600	1355.1	3	0.38513	0.3847613	0.0003687
184	0.4	6548.3	600	1380.1	3	0.38826	0.387893	0.000367
185	0.4	6548.3	600	1405.1	3	0.39136	0.3909997	0.0003603
186	0.4	6548.3	600	1430.1	3	0.39442	0.3940819	0.0003381
187	0.4	6548.3	600	1455.1	3	0.39745	0.3971404	0.0003096
188	0.4	6548.3	600	1480.1	3	0.40045	0.4001756	0.0002744
189	0.4	6548.3	600	1505.1	3	0.40343	0.4031882	0.0002418
190	0.4	6548.3	600	1530.1	3	0.40637	0.4061787	0.0001913
191	0.4	6548.3	600	1555.1	3	0.40928	0.4091476	0.0001324
192	0.4	6548.3	600	1580.1	3	0.41217	0.4120954	7.461E-05
193	0.4	6548.3	600	1605.1	3	0.41503	0.4150226	7.423E-06
194	0.4	6548.3	600	1630.1	3	0.41786	0.4179296	-6.961E-05
195	0.4	6548.3	600	1655.1	3	0.42066	0.4208169	-0.0001569
196	0.4	6548.3	600	1680.1	3	0.42344	0.423685	-0.000245
197	0.4	6548.3	600	1705.1	3	0.42619	0.4265342	-0.0003442
198	0.4	6548.3	600	1730.1	3	0.42891	0.4293649	-0.0004549
199	0.4	6548.3	600	1755.1	3	0.43161	0.4321776	-0.0005676
200	0.4	6548.3	600	1780.1	3	0.43428	0.4349725	-0.0006925
201	0.4	6548.3	600	555	3	0.26486	0.2648542	5.751E-06
202	0.42	6548.3	600	555	3	0.26487	0.2648271	4.287E-05
203	0.44	6548.3	600	555	3	0.26487	0.2648193	5.072E-05
204	0.46	6548.3	600	555	3	0.26487	0.2648246	4.538E-05
205	0.48	6548.3	600	555	3	0.26487	0.2648382	3.185E-05
206	0.5	6548.3	600	555	3	0.26488	0.2648559	2.407E-05
207	0.52	6548.3	600	555	3	0.26488	0.2648749	5.108E-06

208	0.54	6548.3	600	555	3	0.26488	0.2648928	-1.277E-05
209	0.56	6548.3	600	555	3	0.26488	0.264908	-2.799E-05
210	0.58	6548.3	600	555	3	0.26488	0.2649196	-3.958E-05
211	0.6	6548.3	600	555	3	0.26489	0.2649271	-3.71E-05
212	0.62	6548.3	600	555	3	0.26489	0.2649305	-4.05E-05
213	0.64	6548.3	600	555	3	0.26489	0.2649301	-4.011E-05
214	0.66	6548.3	600	555	3	0.26489	0.2649265	-3.651E-05
215	0.68	6548.3	600	555	3	0.26489	0.2649205	-3.052E-05
216	0.7	6548.3	600	555	3	0.26489	0.2649131	-2.306E-05
217	0.72	6548.3	600	555	3	0.2649	0.2649052	-5.167E-06
218	0.74	6548.3	600	555	3	0.26491	0.2648979	1.211E-05
219	0.76	6548.3	600	555	3	0.26492	0.2648923	2.773E-05
220	0.78	6548.3	600	555	3	0.26493	0.2648893	4.071E-05
221	0.8	6548.3	600	555	3	0.26493	0.2648898	4.017E-05
222	0.82	6548.3	600	555	3	0.26494	0.2648946	4.535E-05
223	0.84	6548.3	600	555	3	0.26495	0.2649043	4.567E-05
224	0.86	6548.3	600	555	3	0.26495	0.2649193	3.068E-05
225	0.88	6548.3	600	555	3	0.26496	0.2649398	2.018E-05
226	0.9	6548.3	600	555	3	0.26496	0.2649659	-5.857E-06
227	0.92	6548.3	600	555	3	0.26497	0.2649972	-2.725E-05
228	0.94	6548.3	600	555	3	0.26501	0.2650336	-2.358E-05
229	0.96	6548.3	600	555	3	0.26506	0.2650742	-1.425E-05
230	0.98	6548.3	600	555	3	0.2651	0.2651184	-1.844E-05
231	1	6548.3	600	555	3	0.26513	0.2651651	-3.515E-05
232	1.02	6548.3	600	555	3	0.26516	0.2652132	-5.322E-05
233	1.04	6548.3	600	555	3	0.26519	0.2652614	-7.136E-05
234	1.06	6548.3	600	555	3	0.26522	0.2653082	-8.816E-05
235	1.08	6548.3	600	555	3	0.26529	0.2653521	-6.212E-05
236	1.1	6548.3	600	555	3	0.26538	0.2653917	-1.175E-05
237	1.12	6548.3	600	555	3	0.26546	0.2654255	3.448E-05
238	1.14	6548.3	600	555	3	0.26552	0.265452	6.799E-05
239	1.16	6548.3	600	555	3	0.26558	0.2654699	0.0001101
240	1.18	6548.3	600	555	3	0.26563	0.265478	0.000152
241	1.2	6548.3	600	555	3	0.26556	0.2654755	8.446E-05
242	1.22	6548.3	600	555	3	0.26546	0.2654619	-1.857E-06

243	1.24	6548.3	600	555	3	0.26539	0.2654368	-4.68E-05
244	1.26	6548.3	600	555	3	0.26534	0.2654007	-6.069E-05
245	1.28	6548.3	600	555	3	0.2653	0.2653544	-5.439E-05
246	1.3	6548.3	600	555	3	0.26525	0.2652995	-4.945E-05
247	1.32	6548.3	600	555	3	0.2652	0.2652382	-3.817E-05
248	1.34	6548.3	600	555	3	0.26516	0.2651737	-1.369E-05
249	1.36	6548.3	600	555	3	0.26513	0.2651101	1.985E-05
250	1.38	6548.3	600	555	3	0.2651	0.2650528	4.724E-05
251	0.7	6548.3	600	555	3	0.265	0.2649131	8.694E-05
252	0.7	6548.3	600	555	2.73	0.2651	0.2650876	1.241E-05
253	0.7	6548.3	600	555	2.54	0.2657	0.2657772	-7.72E-05
254	0.7	6548.3	600	555	2.45	0.2661	0.2660144	8.563E-05
255	0.7	6548.3	600	555	2.1	0.2658	0.2658702	-7.024E-05
256	0.7	6548.3	600	555	2	0.2657	0.2656414	5.861E-05
257	0.7	6548.3	600	555	1.82	0.2655	0.2655088	-8.754E-06

CWWT table example:

~ · · · · · · · · · · · · · · · · · · ·	table exa	mpic.											
Flowrates Ef	fficiencies Reflux	: Ratio Number o		et H2S	Inlet NH3 (mass %) Inlet H2S (mass %)	Inlet NH3 0.005 50	0.05 500	0.1 1000	0.15 1500	0.2 2000	0.25 2500	0.3 3000	0.345 3450
10 10 10	30 30 30	1 1 1	5 5 5	100 500 1000	0.01 0.05 0.1	49.11209 50.03104 50.69793	49.10954 50.02848 50.69537	49.1067 50.02564 50.69253	49.10386 50.0228 50.68969	49.10102 50.01996 50.68685	49.09818 50.01713 50.68402	49.09534 50.01429 50.68118	49.09279 50.01173 50.67862
10 10	30 30	1	5	3000 5000	0.3 0.5	52.31912 53.40993	52.31656 53.40737	52.31372 53.40453	52.31088 53.40169	52.30804 53.39885	52.30521 53.39601	52.30237 53.39318	52.29981 53.39062
10 10 10	30 30 30	1 1 1	5 5 5	7000 9000 10900	0.7 0.9 1.09	54.28554 55.03606 55.67066	54.28298 55.03351 55.6681	54.28014 55.03067 55.66526	54.2773 55.02783 55.66242	54.27446 55.02499 55.65958	54.27162 55.02215 55.65675	54.26878 55.01931 55.65391	54.26623 55.01676 55.65135
10 10	30 30	1	10 10	100 500	0.01 0.05	3.344057 4.263002	3.341502 4.260447	3.338662 4.257607	3.335823 4.254768	3.332983 4.251928	3.330144 4.249089	3.327304 4.246249	3.324749 4.243694
10 10 10	30 30 30	1 1 1	10 10 10	1000 3000 5000	0.1 0.3 0.5	4.929892 6.551082 7.641891	4.927337 6.548527 7.639336	4.924497 6.545687 7.636496	4.921658 6.542848 7.633657	4.918818 6.540008 7.630818	4.915979 6.537169 7.627978	4.91314 6.53433 7.625139	4.910584 6.531774 7.622583
10 10	30 30	1	10 10	7000 9000 10900	0.7 0.9 1.09	8.517499 9.268028	8.514944 9.265472	8.512105 9.262633	8.509265 9.259793 9.894388	8.506426 9.256954	8.503586 9.254114	8.500747 9.251275 9.885869	8.498191 9.248719
10 10 10	30 30 30	1	10 15 15	100 500	0.01	9.902622 1.941095 2.86004	9.900067 1.938539 2.857484	9.897227 1.9357 2.854645	1.93286 2.851805	9.891548 1.930021 2.848966	9.888709 1.927181 2.846127	1.924342 2.843287	9.883314 1.921787 2.840732
10 10 10	30 30 30	1 1 1	15 15 15	1000 3000 5000	0.1 0.3 0.5	3.52693 5.14812 6.238929	3.524375 5.145564 6.236374	3.521535 5.142725 6.233534	3.518696 5.139886 6.230695	3.515856 5.137046 6.227855	3.513017 5.134207 6.225016	3.510177 5.131367 6.222176	3.507622 5.128812 6.219621
10 10	30 30	1	15 15	7000 9000	0.7 0.9	7.114537 7.865065	7.111982 7.86251	7.109142 7.85967	7.106303 7.856831	7.103463 7.853991	7.100624 7.851152	7.097784 7.848312	7.095229 7.845757
10 10 10	30 30 30	1	15 20 20	10900 100 500	1.09 0.01 0.05	8.49966 1.898089 2.817034	8.497104 1.895533 2.814478	8.494265 1.892694 2.811639	8.491425 1.889854 2.808799	8.488586 1.887015 2.80596	8.485747 1.884175 2.80312	8.482907 1.881336 2.800281	8.480352 1.87878 2.797725
10 10	30 30	1	20 20	1000 3000	0.1	3.483924 5.105114	3.481368 5.102558 6.193368	3.478529 5.099719	3.47569 5.096879 6.187689	3.47285 5.09404	3.470011 5.091201	3.467171 5.088361	3.464616 5.085806
10 10 10	30 30 30	1	20 20 20	5000 7000 9000	0.5 0.7 0.9	6.195923 7.071531 7.822059	7.068976 7.819504	6.190528 7.066136 7.816664	7.063297 7.813825	6.184849 7.060457 7.810985	6.18201 7.057618 7.808146	6.17917 7.054778 7.805306	6.176615 7.052223 7.802751
10 10 10	30 30 30	1 1	20 25 25	10900 100 500	1.09 0.01 0.05	8.456654 1.89677 2.815715	8.454098 1.894215 2.81316	8.451259 1.891375 2.810321	8.448419 1.888536 2.807481	8.44558 1.885697 2.804642	8.44274 1.882857 2.801802	8.439901 1.880018 2.798963	8.437345 1.877462 2.796407
10 10	30 30	1	25 25	1000 3000	0.1	3.482606 5.103796	3.48005 5.10124	3.477211 5.098401	3.474371 5.095561	3.471532 5.092722	3.468692 5.089882	3.465853 5.087043	3.463297 5.084487
10 10 10	30 30 30	1	25 25 25	5000 7000 9000	0.5 0.7 0.9	6.194605 7.070213 7.820741	6.192049 7.067657 7.818185	6.18921 7.064818 7.815346	6.18637 7.061978 7.812506	6.183531 7.059139 7.809667	6.180691 7.056299 7.806828	6.177852 7.05346 7.803988	6.175296 7.050904 7.801433
10 10	30 30	3	25 5	10900	1.09	8.455335 49.23424	8.45278 49.23168	8.449941 49.22885	8.447101 49.22601	8.444262 49.22317	8.441422 49.22033	8.438583 49.21749	8.436027 49.21493
10 10 10	30 30 30	3 3 3	5 5	500 1000 3000	0.05 0.1 0.3	50.15319 50.82008 52.44127	50.15063 50.81752 52.43871	50.14779 50.81468 52.43587	50.14495 50.81184 52.43303	50.14211 50.809 52.43019	50.13927 50.80616 52.42735	50.13643 50.80332 52.42451	50.13388 50.80077 52.42196
10 10	30 30 30	3 3 3	5 5 5	5000 7000 9000	0.5 0.7 0.9	53.53207 54.40768 55.15821	53.52952 54.40513 55.15565	53.52668 54.40229 55.15282	53.52384 54.39945 55.14998	53.521 54.39661 55.14714	53.51816 54.39377 55.1443	53.51532 54.39093 55.14146	53.51277 54.38837 55.1389
10 10	30 30	3 3	5 10	10900	1.09 0.01	55.79281 3.466204	55.79025 3.463648	55.78741 3.460809	55.78457 3.457969	55.78173 3.45513	55.77889 3.45229	55.77605 3.449451	55.1389 55.7735 3.446895
10 10 10	30 30 30	3 3 3	10 10 10	500 1000 3000	0.05 0.1 0.3	4.385149 5.052039 6.673229	4.382593 5.049483 6.670673	4.379754 5.046644 6.667834	4.376914 5.043804 6.664994	4.374075 5.040965 6.662155	4.371235 5.038125 6.659315	4.368396 5.035286 6.656476	4.36584 5.03273 6.65392
10 10	30 30	3 3	10 10	5000 7000	0.5	7.764038 8.639646	7.761482 8.63709	7.758643 8.634251	7.755803 8.631411	7.752964 8.628572	7.750124 8.625733	7.747285 8.622893	7.74473 8.620338
10 10 10	30 30 30	3 3 3	10 10 15	9000 10900 100	0.9 1.09 0.01	9.390174 10.02477 2.063241	9.387618 10.02221 2.060686	9.384779 10.01937 2.057846	9.38194 10.01653 2.055007	9.3791 10.01369 2.052167	9.376261 10.01086 2.049328	9.373421 10.00802 2.046488	9.370866 10.00546 2.043933
10 10 10	30 30 30	3 3 3	15 15 15	500 1000 3000	0.05 0.1 0.3	2.982186 3.649076 5.270266	2.979631 3.646521 5.267711	2.976791 3.643681 5.264871	2.973952 3.640842 5.262032	2.971112 3.638003 5.259192	2.968273 3.635163 5.256353	2.965433 3.632324 5.253514	2.962878 3.629768 5.250958
10	30 30	3 3	15 15 15	5000 7000	0.5	6.361075 7.236684	6.35852 7.234128	6.355681	6.352841 7.228449 7.978977	6.350002 7.22561	6.347162	6.344323 7.219931	6.341767
10 10 10	30 30 30	3 3 3	15 15 20	9000 10900 100	0.9 1.09 0.01	7.987212 8.621806 2.020235	7.984656 8.619251 2.01768	7.981817 8.616411 2.01484	7.978977 8.613572 2.012001	7.976138 8.610732 2.009161	7.973298 8.607893 2.006322	7.970459 8.605053 2.003482	7.967903 8.602498 2.000927
10 10	30 30	3 3	20 20	500 1000	0.05 0.1	2.93918 3.60607	2.936625 3.603515	2.933785 3.600675	2.930946 3.597836	2.928106 3.594996	2.925267 3.592157	2.922427 3.589318	2.919872 3.586762
10 10 10	30 30 30	3 3 3	20 20 20	3000 5000 7000	0.3 0.5 0.7	5.22726 6.318069 7.193677	5.224705 6.315514 7.191122	5.221865 6.312674 7.188283	5.219026 6.309835 7.185443	5.216186 6.306996 7.182604	5.213347 6.304156 7.179764	5.210507 6.301317 7.176925	5.207952 6.298761 7.174369
10 10 10	30 30 30	3 3 3	20 20 25	9000 10900 100	0.9 1.09 0.01	7.944206 8.5788 2.018917	7.94165 8.576245 2.016361	7.938811 8.573405 2.013522	7.935971 8.570566 2.010682	7.933132 8.567726 2.007843	7.930292 8.564887 2.005003	7.927453 8.562047 2.002164	7.924897 8.559492 1.999609
10 10	30 30	3 3	25 25	500 1000	0.05	2.937862 3.604752	2.935306 3.602197	2.932467 3.599357	2.929627 3.596518	2.926788 3.593678	2.923949 3.590839	2.921109 3.587999	2.918554 3.585444
10 10 10	30 30 30	3 3 3	25 25 25	3000 5000 7000	0.3 0.5 0.7	5.225942 6.316751 7.192359	5.223386 6.314196 7.189804	5.220547 6.311356 7.186964	5.217708 6.308517 7.184125	5.214868 6.305677 7.181285	5.212029 6.302838 7.178446	5.209189 6.299998 7.175606	5.206634 6.297443 7.173051
10 10	30 30	3 3	25 25	9000	0.9	7.942887 8.577482	7.940332 8.574926	7.937492 8.572087	7.934653 8.569247	7.931813 8.566408	7.928974 8.563569	7.926134 8.560729	7.923579 8.558174
10 10 10	30 30 30	5 5 5	5 5 5	100 500 1000	0.01 0.05 0.1	49.35639 50.27533 50.94222	49.35383 50.27278 50.93967	49.35099 50.26994 50.93683	49.34815 50.2671 50.93399	49.34531 50.26426 50.93115	49.34247 50.26142 50.92831	49.33963 50.25858 50.92547	49.33708 50.25602 50.92291
10 10 10	30 30 30	5 5 5	5 5 5	3000 5000 7000	0.3 0.5 0.7	52.56341 53.65422 54.52983	52.56086 53.65167 54.52727	52.55802 53.64883 54.52443	52.55518 53.64599 54.52159	52.55234 53.64315 54.51875	52.5495 53.64031 54.51592	52.54666 53.63747 54.51308	52.5441 53.63491 54.51052
10 10	30 30	5 5	5 5	9000	0.9	55.28036 55.91495	55.2778 55.9124	55.27496 55.90956	55.27212 55.90672	55.26928 55.90388	55.26644 55.90104	55.2636 55.8982	55.26105 55.89564
10 10 10	30 30 30	5 5	10 10 10	100 500 1000	0.01 0.05 0.1	3.58835 4.507295 5.174185	3.585794 4.504739 5.17163	3.582955 4.5019 5.16879	3.580115 4.499061 5.165951	3.577276 4.496221 5.163111	3.574437 4.493382 5.160272	3.571597 4.490542 5.157432	3.569042 4.487987 5.154877
10 10	30 30	5 5	10 10	3000 5000	0.3 0.5 0.7	6.795375 7.886184	6.79282 7.883629	6.78998 7.880789	6.787141 7.87795	6.784301 7.87511	6.781462 7.872271	6.778622 7.869431	6.776067 7.866876
10 10 10	30 30 30	5 5 5	10 10 10	7000 9000 10900	0.7 0.9 1.09	8.761792 9.51232 10.14691	8.759237 9.509765 10.14436	8.756397 9.506925 10.14152	8.753558 9.504086 10.13868	8.750718 9.501246 10.13584	8.747879 9.498407 10.133	8.745039 9.495568 10.13016	8.742484 9.493012 10.12761
10 10 10	30 30 30	5 5 5	15 15 15	100 500 1000	0.01 0.05 0.1	2.185388 3.104333 3.771223	2.182832 3.101777 3.768667	2.179993 3.098938 3.765828	2.177153 3.096098 3.762988	2.174314 3.093259 3.760149	2.171474 3.090419 3.757309	2.168635 3.08758 3.75447	2.166079 3.085024 3.751914
10 10	30 30	5 5	15 15	3000 5000	0.3 0.5	5.392413 6.483222	5.389857 6.480666	5.387018 6.477827	5.384178 6.474987	5.381339 6.472148	5.378499 6.469309	5.37566 6.466469	5.373104 6.463914
10 10 10	30 30 30	5 5 5	15 15 15	7000 9000 10900	0.7 0.9 1.09	7.35883 8.109358 8.743953	7.356274 8.106803 8.741397	7.353435 8.103963 8.738558	7.350595 8.101124 8.735718	7.347756 8.098284 8.732879	7.344917 8.095445 8.730039	7.342077 8.092605 8.7272	7.339522 8.09005 8.724644
10 10	30 30	5 5	20 20	100 500 1000	0.01 0.05	2.142382 3.061327	2.139826 3.058771	2.136987 3.055932	2.134147 3.053092	2.131308 3.050253	2.128468 3.047413	2.125629 3.044574	2.123073 3.042018
10 10 10	30 30 30	5 5 5	20 20 20	3000 5000	0.1 0.3 0.5	3.728217 5.349407 6.440216	3.725661 5.346851 6.43766	3.722822 5.344012 6.434821	3.719982 5.341172 6.431981	3.717143 5.338333 6.429142	3.714303 5.335493 6.426302	3.711464 5.332654 6.423463	3.708908 5.330098 6.420907
10 10 10	30 30 30	5 5	20 20 20	7000 9000 10900	0.7 0.9 1.09	7.315824 8.066352 8.700947	7.313268 8.063796 8.698391	7.310429 8.060957 8.695552	7.307589 8.058118 8.692712	7.30475 8.055278 8.689873	7.301911 8.052439 8.687033	7.299071 8.049599 8.684194	7.296516 8.047044 8.681638
10 10	30 30	5 5	25 25	100 500	0.01	2.141063 3.060008	2.138508 3.057453	2.135668 3.054613	2.132829 3.051774	2.129989 3.048934	2.12715 3.046095	2.12431 3.043255 3.710146	2.121755 3.0407
10 10 10	30 30 30	5 5 5	25 25 25	1000 3000 5000	0.1 0.3 0.5	3.726898 5.348088 6.438897	3.724343 5.345533 6.436342	3.721503 5.342693 6.433503	3.718664 5.339854 6.430663	3.715825 5.337014 6.427824	3.712985 5.334175 6.424984	5.331336 6.422145	3.70759 5.32878 6.419589
10 10	30 30 30	5 5 5	25 25	7000 9000 10900	0.7 0.9 1.09	7.314506 8.065034 8.699628	7.31195 8.062478 8.697073	7.309111 8.059639 8.694233	7.306271 8.056799 8.691394	7.303432 8.05396 8.688554	7.300592 8.05112 8.685715	7.297753 8.048281 8.682875	7.295197 8.045725 8.68032
10 10	30 30	5 7 7 7	25 5 5	100 500	0.01	49.47853 50.39748	49.47598 50.39492	49.47314 50.39208	49.4703 50.38924	49.46746 50.3864	49.46462 50.38356	49.46178 50.38073	49.45922 50.37817
10 10 10	30 30 30	7 7 7	5 5 5	1000 3000 5000	0.1 0.3 0.5	51.06437 52.68556 53.77637	51.06181 52.683 53.77381	51.05897 52.68016 53.77097	51.05613 52.67732 53.76813	51.05329 52.67448 53.76529	51.05045 52.67164 53.76245	51.04762 52.66881 53.75961	51.04506 52.66625 53.75706
10 10	30 30	7 7	5	7000 9000	0.7 0.9	54.65198 55.4025	54.64942 55.39995	54.64658 55.39711	54.64374 55.39427	54.6409 55.39143	54.63806 55.38859	54.63522 55.38575	54.63267 55.38319
10 10 10	30 30 30	7 7 7	5 10 10	10900 100 500	1.09 0.01 0.05	56.0371 3.710496 4.629441	56.03454 3.707941 4.626886	56.0317 3.705101 4.624046	56.02886 3.702262 4.621207	56.02602 3.699422 4.618367	56.02318 3.696583 4.615528	56.02035 3.693744 4.612689	56.01779 3.691188 4.610133
10 10 10	30 30 30	7 7 7	10 10	1000 3000 5000	0.1 0.3 0.5	5.296331 6.917521 8.008331	5.293776 6.914966 8.005775	5.290937 6.912126 8.002936	5.288097 6.909287 8.000096	5.285258 6.906448 7.997257	5.282418 6.903608 7.994417	5.279579 6.900769 7.991578	5.277023 6.898213 7.989022
10 10	30 30	7 7 7	10 10	7000 9000	0.7 0.9	8.883939 9.634467	8.881383 9.631911	8.878544 9.629072	8.875704 9.626232	8.872865 9.623393	8.870025 9.620553	8.867186 9.617714	8.86463 9.615158
10 10 10	30 30 30	7 7 7	10 15 15	10900 100 500	1.09 0.01 0.05	10.26906 2.307534 3.226479	10.26651 2.304978 3.223923	10.26367 2.302139 3.221084	10.26083 2.2993 3.218245	10.25799 2.29646 3.215405	10.25515 2.293621 3.212566	10.25231 2.290781 3.209726	10.24975 2.288226 3.207171
10 10	30 30	7 7 7	15 15	1000 3000	0.1	3.893369 5.514559	3.890814 5.512004	3.887974 5.509164	3.885135 5.506325	3.882295 5.503485	3.879456 5.500646	3.876616 5.497806	3.874061 5.495251
10 10 10	30 30 30	7 7 7	15 15 15	5000 7000 9000	0.5 0.7 0.9	6.605368 7.480976 8.231504	6.602813 7.478421 8.228949	6.599973 7.475581 8.226109	6.597134 7.472742 8.22327	6.594294 7.469902 8.220431	6.591455 7.467063 8.217591	6.588615 7.464224 8.214752	6.58606 7.461668 8.212196
10	30	7	15	10900	1.09	8.866099	8.863543	8.860704	8.857865	8.855025	8.852186	8.849346	8.846791

Crude oil distillation table example:

Crude on		OH	table	CAuii	ipic.																		_
Outlet concentrations expressed	in ppm						,	in (wtpero	entofcrude 0.02)													
STEAMFLOW40	η T(*	*F) 1	Fcrude (bbl/hr) 1	crude (ton/hr) 1 28.51927903	steam (lb/hr) Fs 40	team (kg/hr) 18.1436948	Fsteam (ton/hr)	0.00009	0.00018	0.00027	0.00036	4047 E03	0.1 0.0009 4522.315	0.2 0.0018 3935 675	0.5 0.0045 2620.451	1616 461	1.75 0.01575 1145.842	2.5 0.0225 1095.451	0.027 995.4514	0.036 1395.451	0.045 5995.451	0156 025	0.0486 10000
STEAMFLOW40 STEAMFLOW40	0.2	150 150	5000 5000	28.51927903 28.51927903	40 40	18.1436948 18.1436948	0.02	5042.555 5012.279	4972.061 4941.786	4902.496 4872.22	4833.85 4803.575	4766.116 4735.841	4440.848 4410.573	3854.208 3823.933	2538.984 2508.709	1433.984 1403.709	1064.375 1034.099	1013.984 983.7088	913.984 883.7088	1313.984 1283.709	5913.984 5883.709	9074.568 9044.293	10000
STEAMFLOW40	0.4	150 150	5000 5000	28.51927903	40 40	18.1436948	0.02	5004.676	4934.182	4864.617	4795.971	4728.237	4402.969	3816.329	2501.105	1396.105	1026.496	976.1049	876.1049	1276.105	5876.105	9036.689	10000
STEAMFLOW40 STEAMFLOW40	0.5 0.6 0.7	150 150	5000 5000	28.51927903 28.51927903	40 40	18.1436948 18.1436948	0.02	5004.637 5003.941	4934.144 4933.447	4864.578 4863.882	4795.932 4795.236	4728.199 4727.502	4402.931 4402.234	3816.291 3815.594	2501.067 2500.37	1396.067 1395.37	1026.457 1025.761	976.0665 975.37	876.0665 875.37	1276.067 1275.37	5876.067 5875.37	9036.651 9035.954	10000 10000
STEAMFLOW40 STEAMFLOW40	0.8 0.9	150 150		28.51927903 28.51927903	40 40	18.1436948	0.02	5002.983	4932.49	4862.924	4794.279	4726.545	4401.277	3814.637	2499.413	1394.413	1024.803	974.4128	874.4128	1274.413	5874.413	9034.997	10000
STEAMFLOW40 STEAMFLOW100	0.1	150 150	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100	45.359237 45.359237	0.05 0.05	5013.344 5133.793	4942.851 5063.299	4873.285 4993.734	4804.639 4925.088	4736.906 4857.354	4411.637 4532.086	3824.997 3945.446	2509.773 2630.222	1404.773 1525.222	1035.164 1155.613	984.7735 1105.222	884.7735 1005.222	1284.773 1405.222	5884.773 6005.222	9045.357 9165.806	10000
STEAMFLOW100 STEAMFLOW100 STEAMFLOW100	0.2 0.3	150 150 150	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05 0.05 0.05	5052.325 5022.05 5014.446	4981.832 4951.557	4912.266 4881.991 4874.387	4843.621 4813.345	4775.887 4745.612	4450.619 4420.343 4412.74	3863.979 3833.703 3826.1	2548.755 2518.479 2510.876	1443.755 1413.479	1074.145 1043.87 1036.266	1023.755 993.4795 985.8756	923.7546 893.4795 885.8756	1323.755 1293.479 1285.876	5923.755 5893.479 5885.876	9084.339 9054.063 9046.46	10000 10000 10000
STEAMFLOW100 STEAMFLOW100	0.5 0.6	150	5000 5000	28.51927903	100	45.359237	0.05	5014.125	4943.632	4874.066	4805.421	4737.687	4412.419	3825.779	2510.555	1405.555	1035.945	985.5547	885.5547	1285.555	5885.555	9046.139	10000
STEAMFLOW100 STEAMFLOW100	0.7	150 150 150	5000 5000	28.51927903 28.51927903	100 100	45.359237 45.359237	0.05 0.05	5013.711 5012.754	4943.218 4942.261	4873.652 4872.695	4805.007 4804.049	4737.273 4736.316	4412.005 4411.047	3825.365 3824.407	2510.141 2509.183	1405.141 1404.183	1035.531 1034.574	985.1407 984.1834	885.1407 884.1834	1285.141 1284.183	5885.141 5884.183	9045.725 9044.767	10000
STEAMFLOW100	0.9	150 150	5000 5000	28.51927903	100	45.359237	0.05							3824.224	2509	1404	1034.391	984.0004	884.0004	1284	5884	9044.584	10000
STEAMFLOW150 STEAMFLOW150	0.1 0.2	150 150 150	5000 5000	28.51927903 28.51927903	150 150	68.0388555 68.0388555	0.075 0.075	5139.986 5058.519 5028.244	5069.493 4988.025	4999.927 4918.46	4931.281 4849.814	4863.548 4782.08	4411.637 4538.279 4456.812	3951.639 3870.172	2636.415 2554.948	1531.415 1449.948	1161.806 1080.339	1111.415 1029.948	1011.415 929.948	1411.415 1329.948	6011.415 5929.948	9171.999 9090.532	10000
STEAMFLOW150 STEAMFLOW150 STEAMFLOW150	0.3 0.4	150 150	5000 5000	28.51927903 28.51927903	150 150	68.0388555 68.0388555	0.076	E020 64	4050 146	4888.185 4880.581	4911 025	4744 201	4419 022	2022 202	2524.673 2517.069	1412.060	1042.46	999.6729	903.060	1292.069 1291.748	E902 060	9060.257	10000
STEAMFLOW150 STEAMFLOW150	0.5 0.6 0.7	150 150 150	5000 5000 5000	28.51927903 28.51927903 28.51927903	150 150 150	68.0388555 68.0388555 68.0388555			4949.825 4950.108 4949.411		4811.614 4811.897 4811.2		4418.612 4418.895 4418.198	3832.255 3831.558	2516.748 2517.031 2516.334	1412.031	1042.139 1042.421 1041.725	991.7482 992.0306 991.3341	892.0306 891.3341	1292.031		9052.332 9052.615 9051.918	10000 10000 10000
STEAMFLOW150 STEAMFLOW150 STEAMFLOW150	0.8		5000 5000 5000	28.51927903 28.51927903 28.51927903	150 150 150	68.0388555 68.0388555 68.0388555	0.075 0.075	5018.947 5018.764	4948.454 4948.271	4878.888 4878.706	4810.243 4810.06	4742.509 4742.326		2020 601	2515.377 2515.194 2515.967	1410 277	1040 767	000 2769	890.3768 890.1938 890.9669	1290.377 1290.194 1290.967	E900 277	9050.961 9050.778 9051.551	10000 10000 10000
STEAMFLOW175	0.1	150 150 150		28.51927903	175	79.37866475																9174.746	10000
STEAMFLOW175 STEAMFLOW175	0.2 0.3	150 150	5000 5000	28.51927903 28.51927903	175 175	79.37866475 79.37866475	0.0875	5030.99	4960.497	4921.206 4890.931	4822.286	4754.552	4459.559 4429.284	3872.919 3842.644	2557.695 2527.42	1452.695 1422.42	1083.085 1052.81	1032.695 1002.42	932.6948 902.4196	1332.695 1302.42	5932.695 5902.42	9093.279 9063.004	10000 10000
STEAMFLOW175 STEAMFLOW175 STEAMFLOW175	0.4 0.5 0.6	150 150 150	5000 5000 5000	28.51927903 28.51927903 28.51927903	175 175 175	79.37866475 79.37866475 79.37866475	0.0875 0.0875 0.0875	5023.386 5023.066 5023.348	4952.893 4952.572 4952.855	4883.327 4883.007 4883.289	4814.582 4814.361 4814.643	4746.948 4746.627 4746.909	4421.68 4421.359 4421.641		2519.816 2519.495 2519.777			994.8157 994.4949 994.7773	894.8157 894.4949 894.7773	1294.816 1294.495 1294.777	5894.816 5894.495 5894.777	9055.4 9055.079 9055.361	10000 10000 10000
STEAMFLOW175 STEAMFLOW175	0.7 0.8	150 150	5000 5000	28.51927903 28.51927903	175 175	79.37866475 79.37866475	0.0875	5022.651	4952.158	4882.592 4881.635	4813.947	4746.213	4420.945 4419.988	3834.305	2519.081 2518.124	1414.081	1044.471	994.0808	894.0808	1294.081	5894.081	9054.665 9053.708	10000
STEAMFLOW175 STEAMFLOW175	0.9	150	5000	28.51927903 28.51927903 28.51927903	175	79.37866475 79.37866475 90.718474	0.0976	E031 E11	4051 019	4001 463	4913 907	474E 072	4410 906	2022166	2517.941 2518.714 2641.74	1412 041	1049 991	992.9406 993.7137	902 0406	1292.941 1293.714 1416.74	E902 041	9053.525 9054.298 9177.324	10000 10000 10000
STEAMFLOW200 STEAMFLOW200	0.1 0.2	150 150 150	5000 5000 5000	28.51927903	175 200 200	90.718474	0.1	5063.843	4993.35	4923.784	4936.606 4855.138	4868.872 4787.405	4420.578 4543.604 4462.136	3875.496	2560.272	1455.272	1085.663	1116.74	935.2724	1335.272	5935.272	9095.856	10000
STEAMFLOW200 STEAMFLOW200 STEAMFLOW200	0.3 0.4 0.5	150 150 150 150	5000 5000 5000	28.51927903 28.51927903 28.51927903	200 200 200	90.718474 90.718474 90.718474	0.1 0.1 0.1	5033.568 5025.964 5025.643	4963.074 4955.471	4893.509 4885.905 4885.584	4824.863 4817.259	4757.129 4749.525	4431.861 4424.257	3845.221 3837.617 3837.297	2529.997 2522.393 2522.073	1424.997	1055.388 1047.784	1004.997 997.3934	904.9973 897.3934	1304.997 1297.393 1297.073	5904.997 5897.393	9065.581 9057.977 9057.657	10000 10000 10000
STEAMFLOW200 STEAMFLOW200		150		28.51927903	200 200 200	90.718474	0.1	5025.926	4955.432	4885.867	4817.221	4749.487	4424.219	3837.579	2522.355	1417.355	1047.746	997.355	897.355	1297.355	5897.355	9057.939	10000
STEAMFLOW200 STEAMFLOW200	0.7 0.8 0.9	150 150 150 150	5000 5000 5000	28.51927903 28.51927903	200 200	90.718474 90.718474	0.1	5024.272 5024.089	4953.778 4953.595	4884.213 4884.03	4815.567 4815.384	4747.833 4747.65	4422.565 4422.382	3835.925 3835.742	2520.701 2520.518	1415.701 1415.518	1046.092 1045.909	995.7012 995.5182	895.7012 895.5182	1295.701 1295.518	5895.701 5895.518	9056.285 9056.102	10000
STEAMFLOW200	0.1		5000 5000	28.51927903	200 215	90.718474	0.1	5024.862	4954.369					3836.515	2521.291	1416.291	1046.682	996.2913	896.2913	1296.291	5896.291	9056.875	10000
STEAMFLOW215 STEAMFLOW215	0.2	150 150 150	5000 5000	28.51927903 28.51927903	215 215	97.52235955 97.52235955	0.1075 0.1075	5065.321 5035.046	4994.828 4964.553	4925.262 4894.987	4856.617 4826.341	4788.883 4758.608	4545.082 4463.615 4433.339	3876.975 3846.699	2561.751 2531.475	1456.751 1426.475	1087.141 1056.866	1036.751 1006.475	936.7506 906.4754	1336.751 1306.475	5936.751 5906.475	9097.335 9067.059	10000
STEAMFLOW215 STEAMFLOW215	0.4	150	5000 5000	28.51927903 28.51927903	215 215	97.52235955 97.52235955	0.1075 0.1075	5027.442	4956.949 4956.628	4887.383	4818.737	4750.683	4425.736	3839.096 3838.775	2523.872	1418.872	1049.262	998.8715 998.5507	898.8715 898.5507	1298.872 1298.551	5898.872 5898.551	9059.456 9059.135	10000
STEAMFLOW215 STEAMFLOW215 STEAMFLOW215	0.6 0.7	150 150	5000 5000	28.51927903 28.51927903 28.51927903	215 215	97.52235955 97.52235955 97.52235955	0.1075	5027.404 5026.707	4956.91 4956.214	4886.648	4818.699 4818.003	4750.269	4425.001	3839.057 3838.361	2523.137	1418.833 1418.137	1048.527	998.8331 998.1366	898.8331 898.1366	1298.833 1298.137	5898.137	9059.417	10000
STEAMFLOW215 STEAMFLOW215 STEAMFLOW215	0.8 0.9	150 150 150	5000 5000 5000	28.51927903 28.51927903 28.51927903	215 215 215	97.52235955 97.52235955 97.52235955	0.1075 0.1075 0.1075	5025.75 5025.567 5026.34		4885.691 4885.508 4886.281	4817.045 4816.862 4817.635	4749.129 4749.000	4423.86 4424.632	3837.403 3837.22 3837.993	2522.179 2521.996 2522.769	1416.996 1417.760	1047.387	997.1794 996.9964 997.7695	897.1794 896.9964 897.7695	1297.179 1296.996 1297.769		9057.763 9057.58 9058.353	10000 10000 10000
STEAMFLOW220 STEAMFLOW220	0.1 0.2	150	5000 5000	28.51927903 28.51927903	220 220	99.7903214	0.11	5147.271	5076.778	5007.212	4938.566	4870.833	4545.564	3958.924	2643.7	1538.7	1169.091	1118.7	1018.7	1418.7	6018.7	9179.284	10000
STEAMFLOW220 STEAMFLOW220	0.3 0.4	150 150 150	5000 5000	28.51927903 28.51927903	220 220	99.7903214 99.7903214	0.11 0.11	5035.529 5027.925	4965.035 4957.431	4895.47 4887.866	4826.824 4819.22	4759.09 4751.486	4433.822 4426.218 4425.897	3847.182 3839.578	2531.958 2524.354	1426.958 1419.354	1057.349 1049.745	1006.958 999.354	906.9579 899.354	1306.958 1299.354	5906.958 5899.354	9067.542 9059.938	10000
STEAMFLOW220 STEAMFLOW220	0.5		5000 5000	28.51927903 28.51927903	220 220	99.7903214	0.11	5027.604	4957.11		4818.899 4819.182	4751.165 4751.448	4425.897 4426.18	3839.257	2524.033	1419.033	1049.424	999.0332	899.0332	1299.033	E900 216	9059.617 9059.9	10000
STEAMFLOW220 STEAMFLOW220 STEAMFLOW220	0.7 0.8 0.9	150 150 150	5000 5000 5000	28.51927903 28.51927903 28.51927903	220 220 220	99.7903214 99.7903214 99.7903214	0.11 0.11 0.11	5027.19	4956.696 4955.739	4887.131 4886.174 4885.991	4818.485 4817.528	4750.751 4749.794	4426.18 4425.483 4424.526	3838.843 3837.886	2523.619 2522.662 2522.479	1417.662	1049.01 1048.052 1047.87	998.6191 997.6619 997.4789	898.6191 897.6619	1298.619 1297.662	5898.619 5897.662	9059.203 9058.246 9058.063	10000 10000 10000
STEAMFLOW220 TEMP80	1 0.6	150	5000 5000 5000	28.51927903 28.51927903	220 100	00.7002214	0.11	5036 933	4056 220	4006 TGA	4010 110	4750 294	4435 116	3838.476 3825.907	2523.252 2510.683 2510.683	1418.252	1048.643	998.252 985.683	909 252	4200 252	E000 0E0	9058.836 9046.267 9046.267	10000
TEMP80 TEMP80	0.6	150 80 80 80 80	5000	28.51927903 28.51927903	100 100	45.359237 45.359237 45.359237	0.05	5014.254 5014.254 5014.254	4943.76	4874.195 4874.195 4874.195	4805.549	4737.815	4412.547					985.683	885.683	1285.683	5885.683	9046.267	10000 10000 10000
TEMP80 TEMP80	0.6 0.6 0.6	80 80	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05 0.05	5014.254 5014.254 5014.254	4943.76 4943.76	4874.195 4874.195 4874.195	4805.549 4805.549	4737.815 4737.815	4412.547 4412.547	3825.907 3825.907 3825.907	2510.683 2510.683 2510.683	1405.683 1405.683 1405.683	1036.074 1036.074 1036.074	985.683 985.683 985.683	885.683 885.683 885.683	1285.683 1285.683 1285.683	5885.683 5885.683	9046.267 9046.267 9046.267	10000 10000 10000
TEMP80 TEMP80 TEMP80	0.6	80 80 80		28.51927903	100	45.359237							4412.547	3825.907	2510.683	1405.683	1036.074	985.683	885.683	1285.683	5885.683	9046.267	10000
TEMP80 TEMP80 TEMP80	0.6 0.6 0.6	80 80 80	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05 0.05	5014.254 5014.254 5014.254	4943.76	4874.195 4874.195 4874.195	4805.549 4805.549	4737.815 4737.815	4412.547 4412.547	3825.907 3825.907 3825.907	2510.683 2510.683 2510.683	1405.683	1036.074	985.683 985.683 985.683	885.683 885.683 885.683	1285.683	5885.683	9046.267 9046.267 9046.267	10000 10000 10000
TEMP200 TEMP200	0.6	200	5000	29 51027002	100	45 250327	0.05	E014 E19	4944.024	4874.459 4874.459	4805.813 4805.813	4738.079 4738.079	4412 911	3826.171 3826.171	2510.047	1405 047	1026 229	005 0472	995 0472	1295 047	E00E 047	0046 521	10000
TEMP200 TEMP200	0.6 0.6 0.6	200 200 200 200	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100	45.359237 45.359237 45.359237	0.05	5014.518 5014.518 5014.518							2510.947	1405.947	1036.338	985.9473	885.9473	1285.947 1285.947 1285.947	5885.947	9046.531 9046.531 9046.531	10000 10000 10000
TEMP200 TEMP200	0.6 0.6 0.6	200 200 200	5000 5000 5000 5000	28.51927903 28.51927903	100 100	45.359237 45.359237 45.359237	0.05 0.05	5014.518 5014.518	4944.024 4944.024	4874.459 4874.459 4874.459	4805.813 4805.813	4738.079 4738.079	4412.811 4412.811	3826.171 3826.171	2510.947 2510.947 2510.947	1405.947 1405.947	1036.338 1036.338 1036.338	985.9473 985.9473 985.9473	885.9473 885.9473	1285.947 1285.947 1285.947	5885.947 5885.947	9046.531 9046.531 9046.531	10000 10000 10000
TEMP200 TEMP200 TEMP200	0.6 0.6	200 200 200	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237	0.05	5014.518	4944.024	4874.459	4805.813	4738.079	4412.811	3826.171	2510.947	1405.947	1036.338	985.9473	885.9473	1285.947	5885.947	9046.531	10000
TEMP200 TEMP250	0.6 0.6	200 250 250	5000 5000	28.51927903 28.51927903	100 100	45.359237 45.359237	0.05	5014.518 5014.628	4944.024 4944.135	4874.459 4874.569	4805.813 4805.923	4738.079 4738.189	4412.811 4412.921	3826.171 3826.281	2510.947 2511.057	1405.947 1406.057	1036.338 1036.448	985.9473 986.0574	885.9473 886.0574	1285.947 1286.057	5885.947 5886.057	9046.531 9046.641	10000
TEMP250 TEMP250		250 250		28.51927903 28.51927903	100 100	45.359237	0.05	5014.628	4944.135	4874.569	4805.923	4738.189	4412.921	3826.281	2511.057	1406.057	1036.448	986.0574	886.0574	1286.057	5886.057	9046.641	10000
TEMP250 TEMP250 TEMP250	0.6 0.6 0.6	250 250 250 250	5000 5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05 0.05 0.05	5014.628 5014.628	4944.135	4874.569 4874.569	4805.923 4805.923	4738.189 4738.189	4412.921	3826.281 3826.281 3826.281	2511.057 2511.057 2511.057	1406.057	1036.448 1036.448	986.0574 986.0574 986.0574	886.0574 886.0574	1286.057 1286.057 1286.057	5886.057 5886.057	9046.641 9046.641 9046.641	10000 10000 10000
TEMP250 TEMP250 TEMP250	0.6	250	5000	28 51927903	100	45 250327	0.05	5014.628 5014.628	4944.135 4944.135	4874.569 4874.569 4874.569	4805.923 4805.923	4738.189 4738.189	4412.921	2026 201	2511.057	1406.067	1026 449	006 0574	996 0674	1286.057 1286.057	5886.057	9046 641	10000
TEMP250 TEMP250	0.6 0.6 0.6	250 250 250	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237				4874.569 4874.569 4874.569										1286.057		9046.641 9046.641 9046.641	10000 10000 10000
TEMP350 TEMP350	0.6 0.6	350 350 350	5000 5000	28.51927903 28.51927903	100 100	45.359237 45.359237	0.05 0.05	5014.848 5014.848	4944.355 4944.355	4874.789 4874.789	4806.144 4806.144	4738.41 4738.41	4413.142 4413.142 4413.142	3826.502 3826.502	2511.278 2511.278	1406.278 1406.278	1036.668 1036.668	986.2776 986.2776	886.2776 886.2776	1286.278 1286.278	5886.278 5886.278	9046.862 9046.862	10000
TEMP350 TEMP350	0.6	350	5000 5000	28.51927903	100	45.359237	0.05	5014.848	4944.355	4874.789	4806.144	4738.41 4738.41	4413.142 4413.142	3826.502	2511.278	1406.278	1036.668	986.2776	886.2776	1286.278	5886.278	9046.862	10000
TEMP350 TEMP350 TEMP350	0.6 0.6 0.6	350 350 350	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05 0.05	5014.848 5014.848	4944.355 4944.355	4874.789 4874.789 4874.789	4806.144	4738.41 4738.41	4413.142 4413.142 4413.142 4413.142	3826.502 3826.502	2511.278 2511.278 2511.278 2511.278	1406.278 1406.278	1036.668 1036.668	986.2776 986.2776	886.2776 886.2776	1286.278 1286.278	5886.278 5886.278	9046.862 9046.862 9046.862	10000 10000 10000
TEMP350 TEMP350	0.6	350	5000 5000 5000	28.51927903 28.51927903	100 100	45 250327	0.05	E014 949	4044 255	4074 700	4906 144	4729 41	4412 142	2026 502	2511 270	1406 279	1036 669	006 2776	996 2776	1286.278 1286.278	E006 270	0046 963	10000
TEMP350 TEMP550	0.6 0.6 0.6	350 350 550	5000	28.51927903 28.51927903	100 100	45.359237 45.359237 45.359237	0.05	5015.289	4944.795	4874.789 4874.789 4875.23		4738.41 4738.85	4413.582	3826.942	2511.278 2511.278 2511.278 2511.718	1406.718	1037.109	986.718	886.718	1286.278 1286.718	5886.718	9046.862 9046.862 9047.302	10000 10000 10000
TEMP550 TEMP550	0.6 0.6 0.6		5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05 0.05	5015.289 5015.289	4944.795 4944.795 4944.795	4875.23 4875.23	4806.584 4806.584			3826.942 3826.942 3826.942	2511.718 2511.718 2511.718	1406.718 1406.718	1037.109 1037.109 1037.109	986.718 986.718 986.718	886.718 886.718 886.718	1286.718 1286.718 1286.718	5886.718 5886.718	9047.302 9047.302 9047.302	10000 10000 10000
TEMP550 TEMP550 TEMP550		550 550 550		28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05	5015.289	4944.795 4944.795 4944.795	4875.23	4806.584 4806.584 4806.584 4806.584	4738.85	4413.582 4413.582 4413.582	3826.942	2511.718 2511.718 2511.718	1406.718	1037.109	986.718 986.718 986.718	886.718	1286.718	5886.718	9047.302 9047.302 9047.302	10000 10000
TEMP550 TEMP550	0.6 0.6 0.6	550 550 550	5000 5000 5000	28.51927903 28.51927903	100 100	45.359237 45.359237	0.05	5015.289 5015.289	4944.795 4944.795	4875.23 4875.23	4806.584 4806.584	4738.85 4738.85	4413.582 4413.582	3826.942 3826.942	2511.718 2511.718	1406.718	1037.109	986.718 986.718	886.718 886.718	1286.718 1286.718	5886.718 5886.718	9047.302 9047.302	10000
TEMP550 TEMP550	0.6 0.6	550 550	5000 5000	28.51927903 28.51927903	100 100	45.359237 45.359237	0.05	5015.289 5015.289	4944.795	4875.23 4875.23	4806.584 4806.584	4738.85 4738.85	4413.582	3826.942	2511.718	1406.718	1037.109	986.718 986.718	886.718 886.718	1286.718	5886.718 5886.718	9047.302	10000
TEMP650 TEMP650	0.6 0.6 0.6	650 650	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05	5015.509	4945.015 4945.015 4945.015	4875.45	4806.804 4806.804 4806.804	4739.07	4413.802 4413.802 4413.802	3827.162	2511.938 2511.938	1406.938	1037.329	986.9382	886.9382	1286.938	5886.938	9047.522 9047.522	10000 10000 10000
TEMP650 TEMP650 TEMP650	0.6 0.6 0.6	650 650	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05 0.05 0.05	5015.509	4945.015 4945.015	4875.45 4875.45	4806.804 4806.804 4806.804	4739.07 4739.07	4413.802 4413.802 4413.802	3827.162	2511.938 2511.938	1406.938	1037.329	986.9382 986.9382	886.9382 886.9382	1286.938 1286.938 1286.938	5886.938 5886.938	9047.522 9047.522 9047.522	10000 10000 10000
TEMP650 TEMP650	0.6	650	5000	28.51927903	100	45.359237	0.05	5015.509	4945.015	4875.45	4806.804	4739.07	4413.802	3827.162	2511.938	1406.938	1037.329	986.9382	886.9382	1286.938	5886.938	9047.522	10000
TEMP650 TEMP650	0.6 0.6	650 650	5000 5000	28.51927903 28.51927903	100	45.359237 45.359237	0.05	5015.509 5015.509	4945.015 4945.015	4875.45 4875.45	4806.804 4806.804	4739.07 4739.07	4413.802 4413.802	3827.162 3827.162	2511.938 2511.938	1406.938 1406.938	1037.329 1037.329	986.9382 986.9382	886.9382 886.9382	1286.938 1286.938	5886.938 5886.938	9047.522 9047.522 9047.522	10000
TEMP650 TEMP800		650 800		28.51927903 28.51927903	100 100	45.359237	0.05	5015.509	4945.015	4875.45	4806.804	4739.07	4413.802	3827.162	2511.938	1406.938	1037.329	986.9382	886.9382	1286.938	5886.938	9047.522	10000
TEMP800 TEMP800	0.6 0.6 0.6	800 800 800	5000 5000 5000	28.51927903 28.51927903	100 100	45.359237 45.359237	0.05 0.05	5015.839 5015.839	4945.346 4945.346	4875.78 4875.78	4807.134 4807.134	4739.401 4739.401	4414.132 4414.132 4414.132	3827.492 3827.492	2512.268 2512.268 2512.268	1407.268 1407.268	1037.659 1037.659	987.2685 987.2685	887.2685 887.2685	1287.268 1287.268	5887.268 5887.268	9047.852 9047.852 9047.852	10000
TEMP800 TEMP800 TEMP800	0.6 0.6 0.6 0.6	800 800	5000 5000	28.51927903 28.51927903 28.51927903	100 100	45.359237 45.359237 45.359237	0.05	E01E 920	4945.346 4945.346	4075 70	4907 194	4720 401	4414 192	2927 402	2512 269	1407 269	1027 650	007 2606	997 2696	1207 260	6007 760	0047.953	10000 10000 10000
TEMP800 TEMP800 TEMP800	0.6	800 800	5000 5000 5000	28.51927903 28.51927903 28.51927903	100 100 100	45.359237 45.359237 45.359237	0.05	5015.839	4945.346 4945.346 4945.346	4875.78	4807.134 4807.134	4739.401 4739.401	4414.132 4414.132 4414.132	3827.492 3827.492	2512.268 2512.268	1407.268 1407.268	1037.659 1037.659	987.2685 987.2685	887.2685 887.2685	1287.268 1287.268 1287.268	5887.268	9047.852	10000
TEMP800 TEMP800	0.6 0.6	800	5000 5000	28.51927903 28.51927903	100 100	45.359237 45.359237	0.05 0.05	5015.839 5015.839	4945.346 4945.346	4875.78 4875.78	4807.134 4807.134	4739.401 4739.401	4414.132 4414.132	3827.492 3827.492	2512.268 2512.268	1407.268	1037.659 1037.659	987.2685 987.2685	887.2685 887.2685	1287.268 1287.268	5887.268	9047.852 9047.852	10000 10000
CRUDEFLOW1000 CRUDEFLOW1000	0.1 0.2 0.3	150 150 150	1000 1000 1000	5.703855807 5.703855807	40 40 40	18.1436948 18.1436948	0.02 0.02	6214.408 6214.408	6143.914 6143.914 6143.914	6074.349 6074.349	6005.703 6005.703 6005.703	5937.969 5937.969	5612.701 5612.701	5026.061 5026.061	3710.837 3710.837 3710.837	2605.837 2605.837	2236.228 2236.228	2185.837 2185.837	2085.837 2085.837	2485.837	7085.837	10000 10000 10000	10000 10000 10000
CRUDEFLOW1000 CRUDEFLOW1000	0.4	150 150 150	1000	5.703855807 5.703855807		18.1436948 18.1436948	0.02	6214.408	6143.914	6074.349	6005.703	5937.969	5612.701	5026.061	3710.837	2605.837	2236.228	2185.837	2085.837	2485.837 2485.837	7085.837	10000	10000
CRUDEFLOW1000 CRUDEFLOW1000 CRUDEFLOW1000	0.5 0.6 0.7 0.8	150 150	1000 1000 1000 1000	5.703855807 5.703855807 5.703855807	40 40 40 40 40 40	18.1436948 18.1436948 18.1436948	0.03	6314 409	6149 014	6074 240	COOF 702	E007 000	E612 701	E036 061	3710.837 3710.837 3710.837	2605 927	2226 220	2105 027	2005 027	2495 927	7005 027	10000 10000 10000	10000 10000
CRUDEFLOW1000 CRUDEFLOW1000 CRUDEFLOW1000	0.8	150 150 150 150	1000	5.703855807 5.703855807 5.703855807	40 40	18.1436948 18.1436948 18.1436948			6143.914 6143.914 6143.914	6074.349	6005.703 6005.703 6005.703	5937.969	5612.701	5026.061	3710.837 3710.837 3710.837	2605.837	2236.228	2185.837	2085.837	2485.837 2485.837 2485.837	7085.837	10000	10000 10000 10000
CRUDEFLOW1000 CRUDEFLOW1500 CRUDEFLOW1500	1 0.1 0.2		1000 1500 1500	5.703855807 8.55578371 8.55578371	100 100 100	45.359237 45.359237 45.359237	0.05	6214.408 6064.408 6064.408	6143.914 5993.914 5993.914	6074 240	6005.703 5855.703 5855.703	5027.060	E612 701	5026.061 4876.061 4876.061	2710 927	2605 927	2226 220	2105 027	2005 027	2485.837 2335.837 2335.837	700E 037	10000	10000 10000 10000
CRUDEFLOW1500	0.3	150 150 150		8.55578371		45.359237	0.05	6064.408	5993.914				5462.701 5462.701 5462.701		3560.837	2455.837	2086.228	2035.837	1935.837	2335.837 2335.837 2335.837		10000	10000
CRUDEFLOW1500 CRUDEFLOW1500 CRUDEFLOW1500	0.4 0.5 0.6 0.7	150 150 150	1500 1500 1500	8.55578371 8.55578371 8.55578371	100 100 100	45.359237 45.359237 45.359237	0.05	6064.408 6064.408 6064.408	5993.914 5993.914 5993.914	5924.349 5924.349	5855.703 5855.703 5855.703	5787.969 5787.969	5462.701 5462.701 5462.701	4876.061 4876.061 4876.061	3560.837 3560.837	2455.837 2455.837	2086.228 2086.228 2086.228	2035.837 2035.837 2035.837	1935.837 1935.837 1935.837	2335.837		10000 10000 10000	10000 10000 10000
CRUDEFLOW1500 CRUDEFLOW1500	0.8	150	1500	8.55578371	100	45.359237	0.05	6064.408	5993.914	5924.349	5855.703	5787.969	5462.701	4876.061	3560.837	2455.837	2086.228	2035.837	1935.837	2335.837	6935.837	10000	10000
CRUDEFLOW1500 CRUDEFLOW1500	0.9	150 150 150	1500 1500	8.55578371 8.55578371	100 100	45.359237 45.359237	0.05 0.05	6064.408 6064.408	5993.914 5993.914	5924.349 5924.349	5855.703 5855.703	5787.969 5787.969	5462.701 5462.701	4876.061 4876.061	3560.837 3560.837	2455.837 2455.837	2086.228 2086.228	2035.837 2035.837	1935.837 1935.837	2335.837 2335.837	6935.837 6935.837	10000	10000 10000
CRUDEFLOW2500 CRUDEFLOW2500	0.1 0.2	150	2500 2500	14.25963952 14.25963952	150 150	68.0388555 68.0388555	0.075	5764.408 5764.408	5693.914 5693.914	5624.349 5624.349	5555.703 5555.703	5487.969 5487.969	5162.701 5162.701	4576.061 4576.061	3260.837	2155.837	1786.228	1735.837 1735.837	1635.837 1635.837	2035.837 2035.837	6635.837	9796.421	10000
CRUDEFLOW2500 CRUDEFLOW2500	0.3 0.4	150 150	2500 2500	14.25963952 14.25963952	150 150	68.0388555 68.0388555	0.075	5764.408 5764.408	5693.914 5693.914	5624.349	5555.703 5555.703	5487.969	5162.701	4576.061 4576.061	3260.837 3260.837	2155.837	1786.228	1735.837	1635.837 1635.837	2035.837	6635.837	9796.421 9796.421	10000
CRUDEFLOW2500 CRUDEFLOW2500 CRUDEFLOW2500	0.5 0.6 0.7	150 150 150	2500 2500 2500	14.25963952 14.25963952 14.25963952	150 150 150	68.0388555 68.0388555 68.0388555	0.075	5764.408 5764.408 5764.408	5693.914 5693.914 5693.914	5624.349		5487.969	5162.701 5162.701 5162.701	4576.061 4576.061	3260.837	2155.837	1786.228	1735.837 1735.837 1735.837	1635.837	2035.837 2035.837 2035.837	6635.837	9796.421 9796.421 9796.421	10000 10000 10000
CRUDEFLOW2500 CRUDEFLOW2500	0.7 0.8 0.9	150 150	2500 2500	14.25963952 14.25963952	150 150	68.0388555 68.0388555	0.075	5764.408 5764.408	5693.914 5693.914	5624.349 5624.349	5555.703 5555.703	5487.969 5487.969	5162.701 5162.701	4576.061 4576.061	3260.837	2155.837	1786.228	1735.837 1735.837	1635.837	2035.837	6635.837 6635.837	9796.421 9796.421	10000
CRUDEFLOW2500 CRUDEFLOW2500	1	150	2500 2500	14.25963952	150 150	68.0388555 68.0388555	0.075	5764.408 5764.408	5693.914	5624.349	5555.703	5487.969	5162.701	4576.061	3260.837	2155.837	1786.228	1735.837	1635.837	2035.837	6635.837	9796.421	10000

Appendix II

Derivation of API separator equipment cost

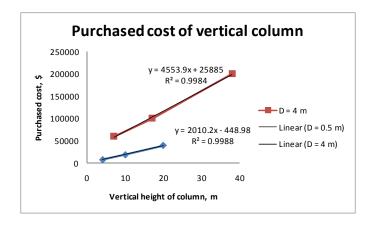
$$Cost = f(Volume)$$

$$Cost = Weight(tons) \cdot Cost \text{ of } steel\left(\frac{\$}{ton}\right) = Mass(kg) \cdot \frac{0.001 \text{ ton}}{1 \text{ kg}} \cdot Cost \text{ of } steel\left(\frac{\$}{ton}\right)$$

$$Cost = Density\left(\frac{kg}{m^3}\right) \cdot V(m^3) \cdot \frac{0.001 \text{ ton}}{1 \text{ kg}} \cdot Cost \text{ of } steel\left(\frac{\$}{ton}\right)$$

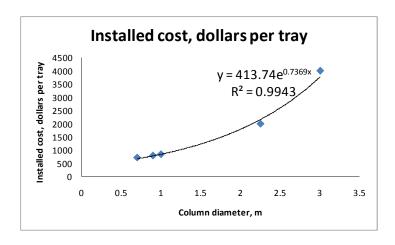
$$Cost = 7850 \frac{kg}{m^3} \cdot V(m^3) \cdot \frac{0.001 \text{ ton}}{1 \text{ kg}} \cdot \frac{\$833}{ton}$$

$$Cost = 6539.05 \cdot V$$


Derivation of Chevron Wastewater Treatment plant cost:

$$D = \left(\frac{4A_c}{\pi}\right)^{\frac{1}{2}} = \left(\frac{4A_n}{0.85\pi}\right)^{\frac{1}{2}} = \left(\frac{4F}{0.85\pi V_n}\right)^{\frac{1}{2}} = \left(\frac{4F}{0.85\pi 0.8V_{nf}}\right)^{\frac{1}{2}} = \left(\frac{1.87F}{V_{nf}}\right)^{\frac{1}{2}} = \left(\frac{(20)^{0.2}(1.87)F}{C_{sb}(\sigma)^{0.2}(\Delta\rho)^{\frac{1}{2}}}\right)^{\frac{1}{2}}$$

Assume the downcomer occupies 15 percent of the cross-sectional area of the column ($A_n = 0.85A_C$) and $A_n = (F/V_n)$. Assume 80 percent flooding ($V_n = 0.8V_{nf}$).

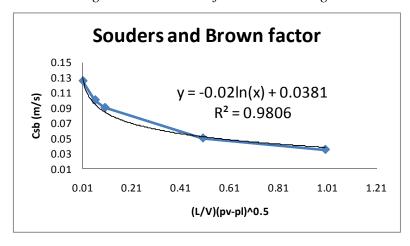

$$D = \left(\frac{3.40F}{C_{sb}(\sigma)^{0.2}(\Delta \rho)^{1/2}}\right)^{1/2}$$

Standard tray spacings for large-diameter columns are generally either 0.46 or 0.61 m.

Points taken from Figure 15-11 on page 783 in PT&W *Plant Design and Economics for Chemical Engineers*. Thus, equation is of the form:

Purchased cost (\$) = a * Vertical Height of column (meters) + b

Points taken from Figure 15-13 on page 794 in PT&W *Plant Design and Economics for Chemical Engineers*. This equation is valid for a sieve tray made of stainless steel. The non-linear regression equation is of the form:


Installed cost ($\frac{\pi}{t}$ = a*exp[b*Column Diameter (meters)]

Thus,

Total cost =
$$1.63 \cdot (4553.9H + 25885) + 1.63 \cdot (Installed cost \cdot N)$$

Total cost =
$$1.63 \cdot (4553.9H + 25885) + 1.63 \cdot N \cdot (413.74e^{0.7639D})$$

Now, it's necessary to find D in terms of feedrate and other parameters. Using Figure 15-5 on page 778 of PT&W *Plant Design and Economics for Chemical Engineers*:

This figure was used for a standard tray spacing of 0.61 meters. The non-linear regression equation is of the form:

Souders and Brown factor =
$$a * ln[RBR*(\Delta \rho)^{0.5}] + b$$

Thus,

$$D = \left(\frac{3.40F}{10^{0.2} \left(-0.02 \ln \left(RBR \cdot (\Delta \rho)^{0.5}\right) + 0.0381\right) \cdot (\Delta \rho)^{1/2}}\right)$$

Note that a surface tension of 10 was used; H₂S surface tension values range from 11.3 to 8.7 dyne/cm. Check reference folder for details.

Rearranging terms:

$$D = 1.46 \left(\frac{F}{\left(-0.02 \ln \left(RBR \cdot (\Delta \rho)^{0.5}\right) + 0.0381\right) \cdot (\Delta \rho)^{\frac{1}{2}}} \right)$$

$$Total \cos t = 7423 \text{H} + 42193 + 674.4 N \left[e^{\frac{1.12 F^{\frac{1}{2}}}{\left(-0.02 \cdot \ln \left(RBR\sqrt{\Delta \rho}\right) + 0.0381\right) \left(\sqrt{\Delta \rho}\right)^{\frac{1}{2}}}} \right] + 42193$$

$$Total \cos t = 7423 \text{H} + 674.4 N \left[e^{\frac{1.12 F^{\frac{1}{2}}}{\left(-0.02 \cdot \ln \left(RBR\sqrt{\Delta \rho}\right) \left(\sqrt{\Delta \rho}\right) + 0.0381\left(\sqrt{\Delta \rho}\right)\right)^{\frac{1}{2}}}} \right] + 42193$$

$$Total \cos t = 7423 \text{H} + 674.4 N \left[e^{\frac{1.12 F^{\frac{1}{2}}}{-0.14 \cdot \Delta \rho^{\frac{1}{2}} \cdot \ln \left(RBR\sqrt{\Delta \rho}\right) + 0.195 \cdot \Delta \rho^{\frac{1}{2}}}} \right] + 42193$$

Final equation:

Total equipment cost =
$$7423\text{H} + 674.4N$$
 $e^{\frac{1.12\sqrt{F}}{-0.071\cdot\Delta\rho^{1/4}\cdot\ln\left(RBR\sqrt{\Delta\rho}\right) + 0.195\cdot\Delta\rho^{1/4}}} + 42193$

Derivation of Activated Sludge process:

From Wikipedia.com: Atmospheric air or pure <u>oxygen</u> is bubbled through primary treated sewage (or industrial wastewater) combined with organisms to develop a biological <u>floc</u> which reduces the <u>organic</u> content of the sewage. Thus, we're measuring outlet organic content.

What's going on inside of an activated sludge system is the wastewater flows first through an aeration tank where oxygen is bubbled through to create turbulent conditions. Then, the wastewater is sent to a secondary clarifier where particles settle naturally to the bottom (bacteria consume carbonaceous matter in the aeration tank and then settle by weight in the calm conditions of the secondary clarifier). Assume ideal CSTR for the aeration tank. Why? Perfect mixing because oxygen is being pumped through the aeration tank at very high speeds. It's like a stirrer stirring the mixture.

$$V = \frac{F_{AO}X}{-r_{A.exit}}$$
 where A is organics

$$Cost(\$) = \frac{\$70}{yd^{3}} \cdot \frac{yd^{3}}{0.765 \, m^{3}} \cdot V(m^{3}) = \frac{\$70}{yd^{3}} \cdot \frac{yd^{3}}{0.765 \, m^{3}} \cdot \frac{F_{AO}\left(\frac{Cout, org - Cin, org}{Cin, org}\right)}{-r_{A,exit}}$$

\$70/yd is the price of concrete. A former wastewater plant operator told me that concrete was widely used to build activated sludge systems.

$$Cost(\$) = \frac{\$70}{yd^{3}} \cdot \frac{yd^{3}}{0.765 \, m^{3}} \cdot \frac{F_{AO}\left(\frac{Cout, org - Cin, org}{Cin, org}\right)}{-r_{A.exit}} = \frac{91.5 \cdot \left(C_{AO} \cdot v_{O}\right)\left(\frac{Cout, org - Cin, org}{Cin, org}\right)}{-r_{A.exit}}$$

Using the Monod equation for biological reactions:

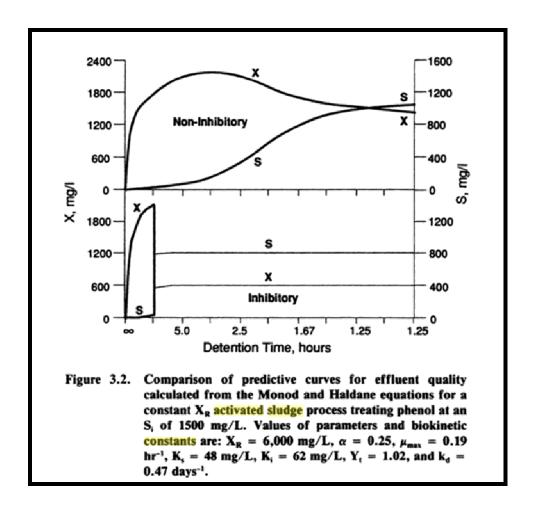
$$-r_A = \frac{kC_S C_C}{K_M + C_S}$$

where k is the maximum utilization rate for the substrate per unit mass of bacteria

K_M is the half velocity coefficient for the substrate

$$C_S$$
 is the $C_{in, \, organics}$
$$C_C = 0.1 (C_{S0}\text{-}C_S) + 0.001$$

Look on page 75 of the Kinetics reaction book for reference.


Thus,

$$Cost(\$) = \frac{91.5 \cdot (v_o)(Cout, org - Cin, org)}{\frac{k \cdot Cout, org [0.1 \cdot (Cin, org - Cout, org) + 0.001]}{K_M + Cout, org}} = \frac{91.5 \cdot \left(\frac{F\left(\frac{ton}{hr}\right) \cdot \frac{907 \ kg}{ton}}{1 \frac{kg}{m^3}}\right)(Cout, org - Cin, org)}{\frac{k \cdot Cout, org [0.1 \cdot (Cin, org - Cout, org) + 0.001]}{K_M + Cout, org}}$$

because volumetric flowrate is flowrate divided by density.

I found a paper online that gave a "k" and " K_M " value for phenol. Phenol is an organic. Source is down below. k = 0.19/hr, $K_M = 48 \text{ ppm (mg/L)}$.

From the book: *Design and Operation of Activated Sludge Processes Using Respirometry* by Alan F. Rozich, Anthony F. Gaudy; CRC Press, 1992, page 46.

Finally:

$$Cost(\$) = \frac{91.5 \cdot \left(907 \cdot F \frac{m^3}{hr}\right) \left(Cout, org - Cin, org\right) \cdot \left(48 + Cout, org\right)}{0.19 \cdot Cout, org\left[0.1 \cdot \left(Cin, org - Cout, org\right) + 0.001\right] \cdot \frac{1000 \ mg}{g}}$$

$$Cost(\$) = \frac{436.81 \cdot F \cdot (Cout, org - Cin, org) \cdot (48 + Cout, org)}{Cout, org[0.1 \cdot (Cin, org - Cout, org) + 0.001]}$$

where F is in ton/hr and Cout, org and Cin, org are in ppm.

That was the cost of the first part of the biological treatment (the aeration tank). There is a second part: the secondary clarifier. Particles settle naturally (by gravity). Conditions are calm and no reaction is occurring so neither a CSTR or a batch reactor can be used.

Reactor tank is emptied once a day. Source: wastewater plant operator. Assume 24 hr time period.

$$Volume\ needed\Big(m^3\Big) = Efficiency \cdot F\bigg(\frac{ton}{hr}\bigg) \cdot \frac{907\ kg}{ton} \cdot 24\ hr \cdot \frac{m^3}{kg} = \frac{Cin, org}{Cout, org} \cdot F\bigg(\frac{ton}{hr}\bigg) \cdot \frac{907\ kg}{ton} \cdot 24\ hr \cdot \frac{m^3}{kg}$$

But, Cinorg = Coutorg, aeration tank. Cout,max = 230 ppm from the slide show (I have a reference). Let's specify a maximum outlet concentration to give a maximum amount of volume that we need.

We'll use concrete as a tank material.

$$Cost(\$) = \frac{\$70}{yd^{3}} \cdot \frac{yd^{3}}{0.765 \, m^{3}} \cdot V(m^{3}) = \frac{\$70}{yd^{3}} \cdot \frac{yd^{3}}{0.765 \, m^{3}} \cdot \frac{Cin, org}{230 \, ppm} \cdot F\left(\frac{ton}{hr}\right) \cdot \frac{907 \, kg}{ton} \cdot 24 \, hr \cdot \frac{m^{3}}{kg}$$

Even though there is a recycle that enters into the clarifier, we'll assume it is zero for now.

Finally,

$$Cost(\$) = \frac{\$70}{yd^3} \cdot \frac{yd^3}{0.765 \, m^3} \cdot \frac{Cin, org}{230 \, ppm} \cdot F\left(\frac{ton}{hr}\right) \cdot \frac{907 \, kg}{ton} \cdot 24 \, hr \cdot \frac{m^3}{kg}$$

$$Cost(\$) = 8660.19 \cdot Cin, org \cdot F\left(\frac{ton}{hr}\right)$$
$$Cin, org = \frac{Cost(\$)}{8660.19 \cdot F\left(\frac{ton}{hr}\right)}$$

$$Total\ Cost(\$) = Cost1 + Cost2 = \frac{436.81 \cdot F \cdot \left(Cout, org, Aera - Cin, org\right) \cdot \left(48 + Cout, org, Aera\right)}{Cout, org, Aera[0.1 \cdot \left(Cin, org - Cout, org, Aera\right) + 0.001]} + 8660.19 \cdot Cin, org, Clarifier \cdot F\left(\frac{ton}{hr}\right)$$

Assume Cout,org, Aera = Cin,org, Clar = 100 ppm.

$$Total\ Cost(\$) = Cost1 + Cost2 = \frac{436.81 \cdot F \cdot \left(100 - Cin, org\right) \cdot \left(48 + 100\right)}{100[0.1 \cdot \left(Cin, org - 100\right) + 0.001]} + 8660.19 \cdot 100 \cdot F\left(\frac{ton}{hr}\right)$$

Finally,

$$Total\ Cost(\$) = 183 \cdot V(m^3) = \frac{646.48 \cdot F \cdot (100 - Cin, org)}{[0.1 \cdot (Cin, org - 100) + 0.001]} + 866,019 \cdot F$$

To find constraint for volume needed for the activated sludge, it is clear that any volume predicted by the equation given below is the minimum volume needed for removing specified contaminant level. Any volume larger is acceptable and is capable of removing more organics:

$$V_{\text{aeration tank}} \ge \frac{F_{AO}X}{-r_{A,exit}} \quad \text{where A is organics}$$

$$V_{\text{secondary clarifier}} \ge \frac{Cin,org}{230 \ ppm} \cdot F\left(\frac{ton}{hr}\right) \cdot \frac{907 \ kg}{ton} \cdot 24 \ hr \cdot \frac{m^3}{kg} \ge 94.64 \cdot Cin, org \cdot F$$

Of course, the volume needed is the addition of $V_{aeration tank} + V_{secondary clarifier}$

Total volume =
$$V_{\text{aeration tank}} + V_{\text{secondary clarifier}} \ge \frac{F_{AO}X}{-r_{A,exit}} + 94.64 \cdot Cin, org \cdot F$$

$$Total\ volume \geq \frac{\left(907 \cdot F\frac{m^{3}}{hr}\right) \left(Cout, org - Cin, org\right) \cdot \left(48 + Cout, org\right)}{0.19 \cdot Cout, org\left[0.1 \cdot \left(Cin, org - Cout, org\right) + 0.001\right] \cdot \frac{1000\ mg}{g}} + 94.64 \cdot Cin, org \cdot F$$

$$Total\ volume \geq \frac{\left(4.77 \cdot F\frac{m^{3}}{hr}\right) \left(Cout, org - Cin, org\right) \cdot \left(48 + Cout, org\right)}{Cout, org\left[0.1 \cdot \left(Cin, org - Cout, org\right) + 0.001\right]} + 94.64 \cdot Cin, org \cdot F$$

Assume Cout,org, Aera = Cin,org, Clar = 100 ppm.

$$Total\ volume \geq \frac{\left(4.77 \cdot F\frac{m^{3}}{hr}\right)\!\!\left(100 - Cin, org\right) \cdot \left(48 + 100\right)}{100\!\left[0.1 \cdot \left(Cin, org - Cout, org\right) + 0.001\right]} + 94.64 \cdot 100 \cdot F$$

$$Total\ volume \geq \frac{\left(7.065 \cdot F \frac{m^3}{hr}\right) \left(100 - Cin, org\right)}{\left[0.1 \cdot \left(Cin, org - Cout, org\right) + 0.001\right]} + 9464 \cdot F$$

Finally,

$$V \ge \frac{70.65 \cdot F \cdot (100 - Cin, org)}{(Cin, org - 100) + 0.01} + 9464 \cdot F$$

Appendix III

Tabulated data for water stream placement:

Freshwater to Units							
	2	3					
FW	25.00	8.57					

Units to Units								
	4	5						
1	2.67	0.00						
2	6.07	0.00						
3	0.00	2.29						

Units	to Sink
	1
3	0.48

	Units to I	Regeneration	
	API	ACA	AS
2	0.00	18.93	0.00
3	0.00	0.00	5.80
4	198.24	0.00	0.00
5	0.00	182.42	0.00
6	0.00	0.00	74.42

Regeneration to Units									
	1	2	5	6					
API	0.06	0.00	0.00	71.68					
RO	2.61	7.10	158.94	2.74					
ACA	0.00	182.40	21.18	0.00					

	Regeneration to Regeneration								
	API	CWW	RO	ACA					
API	0.00	205.96	0.00	0.00					
CWW	0.00	0.00	205.95	0.00					
RO	0.00	0.00	0.00	2.24					
AS	79.46	0.00	0.00	0.00					

Regener	Regeneration to Sink							
	1							
RO	32.33							
AS	0.76							

C	ontaminan	t Concentr	Contaminant Concentration Out of Units										
	Salts	Organics	H2S	Ammonia									
1	101.09	500.00	286.85	67.91									
2	144.40	4000.00	10.00	32.00									
3	70.00	3500.00	175.00	116.67									
4	66.64	502.67	20.97	46.90									
5	45.48	342.84	14.17	43.47									
6	2230.79	6500.00	51.38	47.93									

Contaminant Concentration Into Regeneration						
	Salts	Organics	H2S	Ammonia		
API	641.18	376.01	32.23	48.61		
CWW	641.18	50.00	32.23	48.61		
RO	641.18	50.00	5.00	30.00		
ACA	54.40	679.69	13.68	42.26		
AS	2074.55	6283.08	60.32	52.90		

Contaminant Concentration Out of Regeneration							
	Salts	Organics	H2S	Ammonia			
API	641.18	50.00	32.23	48.61			
CWW	641.18	50.00	5.00	30.00			
RO	20.00	50.00	5.00	30.00			
ACA	54.40	75.00	13.68	42.26			
AS	2074.55	60.00	60.32	52.90			

Endnotes

iт

D420AA9C4819/0/WastewaterTreatment912.pdf.

ⁱ Parkash, Surinder. Refining Processes Handbook. Elsevier. 2003, 254.

ii Koppol, Anantha P.R., Bagajewicz, Miguel J., Dericks, Brian J., and Savelski, Mariano, J. *On Zero Water Discharge Solutions in the Process Industry*. Elsevier. **2002**, 167.

iii Gary, James H., and Handwerk, Glenn E. *Petroleum Refining: Technology and Economics*. 4th Ed. New York: Marcel Dekker, **2001**, 2.

ivhttp://www.waterandwastewater.com/www_services/ask_tom_archive/petroleum_wastewater_desalter_case_study.

^v Gary, James H., and Handwerk, Glenn E. *Petroleum Refining: Technology and Economics*. 4th Ed. New York: Marcel Dekker, **2001**, 47.

vi Gary, James H., and Handwerk, Glenn E. *Petroleum Refining: Technology and Economics*. 4th Ed. New York: Marcel Dekker, **2001**, 52.

vii Gary, James H., and Handwerk, Glenn E. *Petroleum Refining: Technology and Economics*. 4th Ed. New York: Marcel Dekker, **2001**, 51.

viii Gary, James H., and Handwerk, Glenn E. *Petroleum Refining: Technology and Economics*. 4th Ed. New York: Marcel Dekker, **2001**, 55.

ix Kidnay, A.J., and Parrish William. Fundamentals of Natural Gas Processing. CRC Press, 2006, 228.

^x McKetta, John C. Petroleum Process Handbook. Marcel Dekker, Inc. 1990, 728.

xi Kidnay, A.J., and Parrish William. Fundamentals of Natural Gas Processing. CRC Press, 2006, 229.

xii Mohamadbigy, Kh., Bazmi, M., Behradi, R., and Binesh, R. *Amine Absorption Column Design Using Mass Transfer Rate Simulation*. Research Institute of Petroleum Industry. **2005**, 39-46.

xiii http://www.pall.com/pdf/hcp_fig_amine_sweetening.gif.

xiv Gary, James H., and Handwerk, Glenn E. *Petroleum Refining: Technology and Economics*. 4th Ed. New York: Marcel Dekker, **2001**, 176.

xv http://www.emersonprocess.com/RAIhome/documents/Liq_AppData_2900-08.pdf.

http://www.chevron.com/products/sitelets/refiningtechnology/waste wtr treat 6a.aspx.

xvii http://www.chevron.com/products/sitelets/refiningtechnology/waste_wtr_treat_6b.aspx.

xviii http://www.wef.org/NR/rdonlyres/59E69C35-0E6F-4593-A4B8-

xix http://engineering.dartmouth.edu/~cushman/courses/engs37/BioTreatmentTypes.pdf.

xx http://www.lenntech.com/wwtp/wwtp-activated-sludge-process.htm.

xxi http://www.ce.utexas.edu/prof/speitel/steady/steady.htm.

xxiii Seader, J.D., and Henley, Ernest J. *Separation Process Principles*. 2nd Ed. John Wiley & Sons, Inc. **2006**, 217. xxiii http://engineering.dartmouth.edu/~cushman/courses/engs37/BioTreatmentTypes.pdf.

xxiv http://www.water.siemens.com/SiteCollectionDocuments/Product_Lines/Zimpro/Brochures/ZP-APIdr-BR-

xxv Peters, M. S., Timmerhaus, K. D., West, R.E., *Plant Design and Economics for Chemical Engineers*, 5th Edition, McGraw Hill Book Co., New York, NY, **2003**, 777.